The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Mutual regulation between serine and nitric oxide metabolism in human glioblastoma cells.

D-Serine indirectly caused dose- and time-dependent inhibition of neuronal nitric oxide synthase (nNOS) without affecting endothelial nitric oxide synthase (eNOS) in human glioblastoma cell line U87. Activity of D-amino acid oxidase (DAAO), catalyzing the oxidative deamination of d-amino acid, was enhanced by NO in a dose-dependent manner. Recently, we have reported that serine racemase ( SR) is inhibited by NO and activated by D-serine through nitrosylation and denitrosylation, respectively [K. Shoji, S. Mariotto, A.R. Ciampa, H. Suzuki, Regulation of serine racemase activity by D-serine and nitric oxide in human glioblastoma cells, Neurosci. Lett., in press]. Thus, the metabolism of both d-serine and NO in U87 cells is functionally correlated in a complex manner. Suppression of NO production by d-serine in U87 cells contrasts its known action in enhancing nNOS in neurons.[1]

References

  1. Mutual regulation between serine and nitric oxide metabolism in human glioblastoma cells. Shoji, K., Mariotto, S., Ciampa, A.R., Suzuki, H. Neurosci. Lett. (2006) [Pubmed]
 
WikiGenes - Universities