The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

serin     2-amino-3-hydroxy-propanoic acid

Synonyms: DL-Serine, Poly-L-serine, H-DL-Ser-OH, Serine, D-, PubChem11003, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of serine

  • Neither of these steps occur following infection of a mutant of Escherichia coli that was previously shown to block the suppressor function of T4 serine transfer RNA [1].
  • The conversion of precursor RNA into bacteriophage T4 proline and serine transfer RNAs includes two steps for the enzymatic removal of nucleotides from the 3' ends of RNA chains [1].
  • We found that PPM1D, encoding a serine/threonine protein phosphatase, lies within an epicenter of the region at 17q23 that is amplified in breast cancer [2].
  • CFTR, the protein associated with cystic fibrosis, is phosphorylated on serine residues in response to cAMP agonists [3].
  • The hepatitis B virus-encoded transcriptional trans-activator hbx appears to be a novel protein serine/threonine kinase [4].

Psychiatry related information on serine


High impact information on serine

  • Upon recognition of the infectious agent, MBL and the ficolins initiate the lectin pathway of complement activation through attached serine proteases (MASPs), whereas SP-A and SP-D rely on other effector mechanisms: direct opsonization, neutralization, and agglutination [10].
  • This biochemical response couples the TCR to a divergent array of signal transduction molecules including enzymes that regulate lipid metabolism, GTP binding proteins, serine/threonine kinases, and adapter molecules [11].
  • Phosphorylation of a cytoplasmic serine promotes transcytosis of the pIgR without ligand bound [12].
  • The p21-activated kinases (PAKs) 1-3 are serine/threonine protein kinases whose activity is stimulated by the binding of active Rac and Cdc42 GTPases [13].
  • Reversible phosphorylation of serine residues in the regulatory domains affects the activities of all three enzymes [14].

Chemical compound and disease context of serine


Biological context of serine


Anatomical context of serine

  • Unique tRNAs that have complementary UCA anticodons are aminoacylated with serine, the seryl-tRNA is converted to selenocysteyl-tRNA and the latter binds specifically to a special elongation factor and is delivered to the ribosome [25].
  • Certain serine proteases that derive from the circulation (e.g., coagulation factors), inflammatory cells (e.g., mast cell and neutrophil proteases), and from multiple other sources (e.g., epithelial cells, neurons, bacteria, fungi) can cleave protease-activated receptors (PARs), a family of four G protein-coupled receptors [26].
  • Effects of serine/threonine protein phosphatases on ion channels in excitable membranes [27].
  • The delta chain is phosphorylated on a serine residue in response to T cell activation with antigen [28].
  • Cytolytic lymphocytes (CTLs) are characterized by their inclusion of cytoplasmic granules containing effector molecules such as perforin and the serine proteases [29].

Associations of serine with other chemical compounds


Gene context of serine


Analytical, diagnostic and therapeutic context of serine


  1. A mutant of escherichia coli defective in removing 3' terminal nucleotides from some transfer RNA precursor molecules. Seidman, J.G., Schmidt, F.J., Foss, K., McClain, W.H. Cell (1975) [Pubmed]
  2. Oncogenic properties of PPM1D located within a breast cancer amplification epicenter at 17q23. Li, J., Yang, Y., Peng, Y., Austin, R.J., van Eyndhoven, W.G., Nguyen, K.C., Gabriele, T., McCurrach, M.E., Marks, J.R., Hoey, T., Lowe, S.W., Powers, S. Nat. Genet. (2002) [Pubmed]
  3. Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cheng, S.H., Rich, D.P., Marshall, J., Gregory, R.J., Welsh, M.J., Smith, A.E. Cell (1991) [Pubmed]
  4. The hepatitis B virus-encoded transcriptional trans-activator hbx appears to be a novel protein serine/threonine kinase. Wu, J.Y., Zhou, Z.Y., Judd, A., Cartwright, C.A., Robinson, W.S. Cell (1990) [Pubmed]
  5. Association of moderate alcohol consumption and plasma concentration of endogenous tissue-type plasminogen activator. Ridker, P.M., Vaughan, D.E., Stampfer, M.J., Glynn, R.J., Hennekens, C.H. JAMA (1994) [Pubmed]
  6. Disruption of the serine/threonine kinase 9 gene causes severe X-linked infantile spasms and mental retardation. Kalscheuer, V.M., Tao, J., Donnelly, A., Hollway, G., Schwinger, E., Kübart, S., Menzel, C., Hoeltzenbein, M., Tommerup, N., Eyre, H., Harbord, M., Haan, E., Sutherland, G.R., Ropers, H.H., Gécz, J. Am. J. Hum. Genet. (2003) [Pubmed]
  7. Large-scale, multicenter study of cerebrospinal fluid tau protein phosphorylated at serine 199 for the antemortem diagnosis of Alzheimer's disease. Itoh, N., Arai, H., Urakami, K., Ishiguro, K., Ohno, H., Hampel, H., Buerger, K., Wiltfang, J., Otto, M., Kretzschmar, H., Moeller, H.J., Imagawa, M., Kohno, H., Nakashima, K., Kuzuhara, S., Sasaki, H., Imahori, K. Ann. Neurol. (2001) [Pubmed]
  8. Electrostatic effects and binding determinants in the catalysis of prolyl oligopeptidase. Site specific mutagenesis at the oxyanion binding site. Szeltner, Z., Rea, D., Renner, V., Fulop, V., Polgar, L. J. Biol. Chem. (2002) [Pubmed]
  9. A serine protease triggers the initial step of transmembrane signalling in cytotoxic T cells. Utsunomiya, N., Nakanishi, M. J. Biol. Chem. (1986) [Pubmed]
  10. Collections and ficolins: humoral lectins of the innate immune defense. Holmskov, U., Thiel, S., Jensenius, J.C. Annu. Rev. Immunol. (2003) [Pubmed]
  11. T cell antigen receptor signal transduction pathways. Cantrell, D. Annu. Rev. Immunol. (1996) [Pubmed]
  12. Transepithelial transport of immunoglobulins. Mostov, K.E. Annu. Rev. Immunol. (1994) [Pubmed]
  13. Biology of the p21-activated kinases. Bokoch, G.M. Annu. Rev. Biochem. (2003) [Pubmed]
  14. Tetrahydropterin-dependent amino acid hydroxylases. Fitzpatrick, P.F. Annu. Rev. Biochem. (1999) [Pubmed]
  15. Local mutagenesis of Rous sarcoma virus: the major sites of tyrosine and serine phosphorylation of pp60src are dispensable for transformation. Cross, F.R., Hanafusa, H. Cell (1983) [Pubmed]
  16. A novel homeobox gene PITX3 is mutated in families with autosomal-dominant cataracts and ASMD. Semina, E.V., Ferrell, R.E., Mintz-Hittner, H.A., Bitoun, P., Alward, W.L., Reiter, R.S., Funkhauser, C., Daack-Hirsch, S., Murray, J.C. Nat. Genet. (1998) [Pubmed]
  17. Human insulin-degrading enzyme shares structural and functional homologies with E. coli protease III. Affholter, J.A., Fried, V.A., Roth, R.A. Science (1988) [Pubmed]
  18. Adipsin and complement factor D activity: an immune-related defect in obesity. Rosen, B.S., Cook, K.S., Yaglom, J., Groves, D.L., Volanakis, J.E., Damm, D., White, T., Spiegelman, B.M. Science (1989) [Pubmed]
  19. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Coussens, L.M., Raymond, W.W., Bergers, G., Laig-Webster, M., Behrendtsen, O., Werb, Z., Caughey, G.H., Hanahan, D. Genes Dev. (1999) [Pubmed]
  20. The structure and regulation of protein phosphatases. Cohen, P. Annu. Rev. Biochem. (1989) [Pubmed]
  21. Respiratory tract mucin genes and mucin glycoproteins in health and disease. Rose, M.C., Voynow, J.A. Physiol. Rev. (2006) [Pubmed]
  22. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Zha, J., Harada, H., Yang, E., Jockel, J., Korsmeyer, S.J. Cell (1996) [Pubmed]
  23. Molecular cloning and functional analysis of Drosophila TAF110 reveal properties expected of coactivators. Hoey, T., Weinzierl, R.O., Gill, G., Chen, J.L., Dynlacht, B.D., Tjian, R. Cell (1993) [Pubmed]
  24. Sterile 20 kinase phosphorylates histone H2B at serine 10 during hydrogen peroxide-induced apoptosis in S. cerevisiae. Ahn, S.H., Cheung, W.L., Hsu, J.Y., Diaz, R.L., Smith, M.M., Allis, C.D. Cell (2005) [Pubmed]
  25. Selenocysteine. Stadtman, T.C. Annu. Rev. Biochem. (1996) [Pubmed]
  26. Protease-activated receptors: contribution to physiology and disease. Ossovskaya, V.S., Bunnett, N.W. Physiol. Rev. (2004) [Pubmed]
  27. Effects of serine/threonine protein phosphatases on ion channels in excitable membranes. Herzig, S., Neumann, J. Physiol. Rev. (2000) [Pubmed]
  28. Identification of the components of the murine T cell antigen receptor complex. Samelson, L.E., Harford, J.B., Klausner, R.D. Cell (1985) [Pubmed]
  29. A polyadenylate binding protein localized to the granules of cytolytic lymphocytes induces DNA fragmentation in target cells. Tian, Q., Streuli, M., Saito, H., Schlossman, S.F., Anderson, P. Cell (1991) [Pubmed]
  30. Peroxidase-catalyzed halogenation. Morrison, M., Schonbaum, G.R. Annu. Rev. Biochem. (1976) [Pubmed]
  31. ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Boulton, T.G., Nye, S.H., Robbins, D.J., Ip, N.Y., Radziejewska, E., Morgenbesser, S.D., DePinho, R.A., Panayotatos, N., Cobb, M.H., Yancopoulos, G.D. Cell (1991) [Pubmed]
  32. Charcot-Marie-Tooth disease type 1A. Association with a spontaneous point mutation in the PMP22 gene. Roa, B.B., Garcia, C.A., Suter, U., Kulpa, D.A., Wise, C.A., Mueller, J., Welcher, A.A., Snipes, G.J., Shooter, E.M., Patel, P.I., Lupski, J.R. N. Engl. J. Med. (1993) [Pubmed]
  33. H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Celeste, A., Difilippantonio, S., Difilippantonio, M.J., Fernandez-Capetillo, O., Pilch, D.R., Sedelnikova, O.A., Eckhaus, M., Ried, T., Bonner, W.M., Nussenzweig, A. Cell (2003) [Pubmed]
  34. Arginine/serine-rich domains of the su(wa) and tra RNA processing regulators target proteins to a subnuclear compartment implicated in splicing. Li, H., Bingham, P.M. Cell (1991) [Pubmed]
  35. Serine protease inhibitor 6-deficient mice have increased neutrophil immunity to Pseudomonas aeruginosa. Zhang, M., Liu, N., Park, S.M., Wang, Y., Byrne, S., Murmann, A.E., Bahr, S., Peter, M.E., Olson, S.T., Belaaouaj, A., Ashton-Rickardt, P.G. J. Immunol. (2007) [Pubmed]
  36. Arginine methylation of STAT1 modulates IFNalpha/beta-induced transcription. Mowen, K.A., Tang, J., Zhu, W., Schurter, B.T., Shuai, K., Herschman, H.R., David, M. Cell (2001) [Pubmed]
  37. ATM-dependent phosphorylation of nibrin in response to radiation exposure. Gatei, M., Young, D., Cerosaletti, K.M., Desai-Mehta, A., Spring, K., Kozlov, S., Lavin, M.F., Gatti, R.A., Concannon, P., Khanna, K. Nat. Genet. (2000) [Pubmed]
  38. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Shieh, S.Y., Ikeda, M., Taya, Y., Prives, C. Cell (1997) [Pubmed]
  39. Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Wen, Z., Zhong, Z., Darnell, J.E. Cell (1995) [Pubmed]
  40. The nontransmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid C-terminal sequence. Frangioni, J.V., Beahm, P.H., Shifrin, V., Jost, C.A., Neel, B.G. Cell (1992) [Pubmed]
  41. Phytochrome-specific type 5 phosphatase controls light signal flux by enhancing phytochrome stability and affinity for a signal transducer. Ryu, J.S., Kim, J.I., Kunkel, T., Kim, B.C., Cho, D.S., Hong, S.H., Kim, S.H., Fernández, A.P., Kim, Y., Alonso, J.M., Ecker, J.R., Nagy, F., Lim, P.O., Song, P.S., Schäfer, E., Nam, H.G. Cell (2005) [Pubmed]
  42. Phosphorylation and modulation of recombinant GluR6 glutamate receptors by cAMP-dependent protein kinase. Raymond, L.A., Blackstone, C.D., Huganir, R.L. Nature (1993) [Pubmed]
  43. Functional significance of the Kunitz-type inhibitory domains of lipoprotein-associated coagulation inhibitor. Girard, T.J., Warren, L.A., Novotny, W.F., Likert, K.M., Brown, S.G., Miletich, J.P., Broze, G.J. Nature (1989) [Pubmed]
  44. Complete reversal of fatal pulmonary hypertension in rats by a serine elastase inhibitor. Cowan, K.N., Heilbut, A., Humpl, T., Lam, C., Ito, S., Rabinovitch, M. Nat. Med. (2000) [Pubmed]
WikiGenes - Universities