The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Alternative splicing in protein associated with Myc ( Pam) influences its binding to c-Myc.

We recently identified Pam (for protein associated with c-Myc), as a binding partner for the tuberous sclerosis complex (TSC) protein tuberin in brain. The highly conserved Pam homologs in Drosophila and C. elegans are neuron-specific proteins that regulate synaptic growth. The Pam gene contains 83 exons and encodes a 4,641-amino-acid polypeptide with a predicted molecular weight of approximately 510 kDa. In a previous study, we demonstrated that Pam is expressed as two forms, approximately 450 kDa in rat embryonic and a approximately 350 kDa in rat adult brain. Here we have extended that work to show the approximately 450 kDa form is expressed in rat embryonic kidney, heart, and lung and in rat cell lines, and the approximately 350 kDa form is expressed in adult rat tissues as well as in human and mouse brain and human and mouse cell lines. To understand the size difference, we investigated alternative splicing of Pam in brain and detected six isoforms in the Myc-binding region resulting from splicing of exon 53, and three new exons, 52A, 56, and 56A. We also demonstrate that the presence of exon 52A in Pam significantly enhances binding to Myc, suggesting functional importance of this alternative splicing. The presence of Pam in many cellular compartments, its spliced variants, as well as its multiple binding partners, including tuberin, make it a complex, yet intriguing protein in the nervous system.[1]

References

  1. Alternative splicing in protein associated with Myc (Pam) influences its binding to c-Myc. Santos, T.M., Han, S., Bowser, M., Sazani, K., Beauchamp, R.L., Murthy, V., Bhide, P.G., Ramesh, V. J. Neurosci. Res. (2006) [Pubmed]
 
WikiGenes - Universities