The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

In-a-day electrochemical detection of coliforms in drinking water using a tyrosinase composite biosensor.

A rapid method for the detection of fecal contamination in water based on the use of a tyrosinase composite biosensor for improved amperometric detection of beta-galactosidase activity is reported. The method relies on the detection of phenol released after the hydrolysis of phenyl beta-D-galactopyranoside (PG) by beta-galactosidase. Under the optimized PG concentration and pH (4.0) values, a detection limit of 1.2x10(-3) unit of beta-galactosidase/mL-1 was obtained. The capability of the sensor for the detection of Escherichia coli was evaluated using polymyxin B sulfate to allow permeabilization of the bacteria membrane. A detection limit of 1x10(6) cfu of E. coli mL-1 was obtained with no preconcentration or pre-enrichment steps. To improve the analytical characteristics for bacteria detection, the processes involving galactosidase induction during incubation and membrane permeabilization were optimized. Using 0.25 mM isopropyl beta-D-thiogalactopyranoside for the enzyme activity induction, and 10 microg mL-1 polymyxin B sulfate as permeabilizer agent, it was possible to detect bacteria concentrations as low as 10 cfu mL-1 after 5 h of enrichment. The possibility of detecting E. coli at the required levels for drinking water quality assessment (1 cfu/100 mL) is demonstrated, the time of analysis being shorter than 6.5 h and involving a simple methodology.[1]


  1. In-a-day electrochemical detection of coliforms in drinking water using a tyrosinase composite biosensor. Serra, B., Morales, M.D., Zhang, J., Reviejo, A.J., Hall, E.H., Pingarron, J.M. Anal. Chem. (2005) [Pubmed]
WikiGenes - Universities