The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Ileal oxalate absorption and urinary oxalate excretion are enhanced in Slc26a6 null mice.

Intestinal oxalate transport, mediated by anion exchange proteins, is important to oxalate homeostasis and consequently to calcium oxalate stone diseases. To assess the contribution of the putative anion transporter (PAT)1 (Slc26a6) to transepithelial oxalate transport, we compared the unidirectional and net fluxes of oxalate across isolated, short-circuited segments of the distal ileum of wild-type (WT) mice and Slc26a6 null mice [knockout (KO)]. Additionally, urinary oxalate excretion was measured in both groups. In WT mouse ileum, there was a small net secretion of oxalate (J(net)(Ox) = -5.0 +/-5.0 pmol.cm(-2).h(-1)), whereas in KO mice J(net)(Ox) was significantly absorptive (75 +/- 10 pmol.cm(-2)h.h(-1)), which was the result of a smaller serosal-to-mucosal oxalate flux (J(sm)(Ox)) and a larger mucosal-to-serosal oxalate flux (J(ms)(Ox)). Mucosal DIDS (200 microM) reduced J(sm)(Ox) in WT mice, leading to reversal of the direction of net oxalate transport from secretion to absorption (J(net)(Ox) = 15.0 +/- 5.0 pmol.cm(-2).h(-1)) , but DIDS had no significant effect on KO ileum. In WT mice in the absence of mucosal Cl(-), there were small increases in J(ms)(Ox) and decreases in J(sm)(Ox) that led to a small net oxalate absorption. In KO mice, J(net)(Ox) was 1.5-fold greater in the absence of mucosal Cl(-), due solely to an increase in J(ms)(Ox). Urinary oxalate excretion was about fourfold greater in KO mice compared with WT littermates. We conclude that PAT1 is DIDS sensitive and mediates a significant fraction of oxalate efflux across the apical membrane in exchange for Cl(-); as such, PAT1 represents a major apical membrane pathway mediating J(sm)(Ox).[1]

References

  1. Ileal oxalate absorption and urinary oxalate excretion are enhanced in Slc26a6 null mice. Freel, R.W., Hatch, M., Green, M., Soleimani, M. Am. J. Physiol. Gastrointest. Liver Physiol. (2006) [Pubmed]
 
WikiGenes - Universities