The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

oxalic acid     ethanedioic acid

Synonyms: HOOCCOOH, Aktisal, Aquisal, Oxaalzuur, oxalate, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of oxalic acid


Psychiatry related information on oxalic acid


High impact information on oxalic acid


Chemical compound and disease context of oxalic acid


Biological context of oxalic acid


Anatomical context of oxalic acid


Associations of oxalic acid with other chemical compounds

  • Oxalate inhibited enzyme activity only at nonsaturating concentrations of NADPH (Ki 5.6 mM) [24].
  • Deoxycholate also increased the absorption of urea, decreased the electrical potential difference, and increased colonic clearance of oxalate, observations which are consistent with an increase in colonic mucosal permeability [25].
  • Octanoic acid, a medium chain fatty acid, did not alter oxalate absorption of oxalate by a nonspecific alteration of mucosal permeability [25].
  • This ATP-dependent calcium uptake activity was measured in the presence of 5 mM Na azide to prevent mitochondrial accumulation, was increased by oxalate, and was blocked by 150 microM quercetin and 50 microM vanadate (known inhibitors of calcium uptake into the sarcoplasmic reticulum) [26].
  • These and other data demonstrate that oxalate may inhibit a signaling step positioned upstream of oxidase assembly/activation but downstream of Ca(2)+ fluxes into the plant cell cytosol [17].

Gene context of oxalic acid

  • In the presence of high oxalate concentrations as found in renal tubular fluid and urine, Slc26a6 may largely function as an electrogenic Cl(-)-oxalate exchanger [27].
  • The human SLC26A6 polypeptide variants SLC26A6c and SLC26A6d were inactive as transporters of oxalate, sulfate, and chloride [28].
  • Expression of SLC26A7-A9 proteins in Xenopus oocytes demonstrated chloride, sulfate, and oxalate transport activity, suggesting that they encode functional anion exchangers [29].
  • Functional comparison with murine Slc26a1, the basolateral oxalate exchanger of the proximal tubule, reveals a number of intriguing differences [30].
  • Here, we examined the mRNA expressions of OPN, MGP, ON, and OC in the kidneys of stone-forming model rats administered an oxalate precursor, ethylene glycol (EG) for up to 28 days [31].

Analytical, diagnostic and therapeutic context of oxalic acid

  • The degree of supersaturation was correlated with ultrafiltrate oxalate (RSR, r = 0.99, r = 29, P less than 0.001; CPR, r = 0.75, n = 11, P less than 0.001) [4].
  • Complex pathogenesis of hyperoxaluria after jejunoileal bypass surgery. Oxalogenic substances in diet contribute to urinary oxalate [32].
  • Subcellular calcium localization using oxalate precipitation and electron microscopy showed calcium accumulation within the terminal web subjacent to regions of attaching and effacing adhesion [33].
  • Oxalate excretion correlated highly with urinary phosphate excretion and with intake of phosphate supplements corrected for body surface area [34].
  • Subsequent perfusion with solutions containing Ca2+, MgATP, and oxalate leads to Ca uptake by SER [35].


  1. Importance of the colon in enteric hyperoxaluria. Dobbins, J.W., Binder, H.J. N. Engl. J. Med. (1977) [Pubmed]
  2. An inheritable anomaly of red-cell oxalate transport in "primary" calcium nephrolithiasis correctable with diuretics. Baggio, B., Gambaro, G., Marchini, F., Cicerello, E., Tenconi, R., Clementi, M., Borsatti, A. N. Engl. J. Med. (1986) [Pubmed]
  3. Calcium oxalate urolithiasis in mice lacking anion transporter Slc26a6. Jiang, Z., Asplin, J.R., Evan, A.P., Rajendran, V.M., Velazquez, H., Nottoli, T.P., Binder, H.J., Aronson, P.S. Nat. Genet. (2006) [Pubmed]
  4. Evidence that serum calcium oxalate supersaturation is a consequence of oxalate retention in patients with chronic renal failure. Worcester, E.M., Nakagawa, Y., Bushinsky, D.A., Coe, F.L. J. Clin. Invest. (1986) [Pubmed]
  5. Highly efficient preparation of aryl beta-diketo acids with tert-butyl methyl oxalate. Jiang, X.H., Song, L.D., Long, Y.Q. J. Org. Chem. (2003) [Pubmed]
  6. The etiology of urolithiasis in Udaipur (western part of India). Pendse, A.K., Singh, P.P. Urol. Res. (1986) [Pubmed]
  7. Donepezilium oxalate trihydrate, a therapeutic agent for Alzheimer's disease. Ravikumar, K., Sridhar, B., Sathe, D.G., Naidu, A.V., Sawant, K.D. Acta crystallographica. Section C, Crystal structure communications (2006) [Pubmed]
  8. Acute oxalate nephropathy induced by star fruit in rats. Fang, H.C., Chen, C.L., Wang, J.S., Chou, K.J., Chiou, Y.S., Lee, P.T., Yeh, J.H., Yeh, M.Y., Chung, H.M. Am. J. Kidney Dis. (2001) [Pubmed]
  9. A key stone cop regulates oxalate homeostasis. Kleta, R. Nat. Genet. (2006) [Pubmed]
  10. Docking phospholipase A2 on membranes using electrostatic potential-modulated spin relaxation magnetic resonance. Lin, Y., Nielsen, R., Murray, D., Hubbell, W.L., Mailer, C., Robinson, B.H., Gelb, M.H. Science (1998) [Pubmed]
  11. Primary hyperoxaluria type I: oxalate and glycolate unsuitable for prenatal diagnosis. Leumann, E., Matasović, A., Niederwieser, A. Lancet (1986) [Pubmed]
  12. Alanine-glyoxylate aminotransferase-deficient mice, a model for primary hyperoxaluria that responds to adenoviral gene transfer. Salido, E.C., Li, X.M., Lu, Y., Wang, X., Santana, A., Roy-Chowdhury, N., Torres, A., Shapiro, L.J., Roy-Chowdhury, J. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  13. Structure of phosphorylated enzyme I, the phosphoenolpyruvate:sugar phosphotransferase system sugar translocation signal protein. Teplyakov, A., Lim, K., Zhu, P.P., Kapadia, G., Chen, C.C., Schwartz, J., Howard, A., Reddy, P.T., Peterkofsky, A., Herzberg, O. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  14. Selenium-induced protection against cis-diamminedichloroplatinum(II) nephrotoxicity in mice and rats. Baldew, G.S., van den Hamer, C.J., Los, G., Vermeulen, N.P., de Goeij, J.J., McVie, J.G. Cancer Res. (1989) [Pubmed]
  15. Structure-function relationships in OxlT, the oxalate/formate transporter of Oxalobacter formigenes. Topological features of transmembrane helix 11 as visualized by site-directed fluorescent labeling. Fu, D., Maloney, P.C. J. Biol. Chem. (1998) [Pubmed]
  16. Correction of erythrocyte abnormalities in idiopathic calcium-oxalate nephrolithiasis and reduction of urinary oxalate by oral glycosaminoglycans. Baggio, B., Gambaro, G., Marchini, F., Marzaro, G., Williams, H.E., Borsatti, A. Lancet (1991) [Pubmed]
  17. Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Cessna, S.G., Sears, V.E., Dickman, M.B., Low, P.S. Plant Cell (2000) [Pubmed]
  18. Experimental tests of a homology model for OxlT, the oxalate transporter of Oxalobacter formigenes. Yang, Q., Wang, X., Ye, L., Mentrikoski, M., Mohammadi, E., Kim, Y.M., Maloney, P.C. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  19. Modulation of stoichiometry of the sarcoplasmic reticulum calcium pump may enhance thermodynamic efficiency. Gafni, A., Boyer, P.D. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  20. Oxalate degradation by microbes of the large bowel of herbivores: the effect of dietary oxalate. Allison, M.J., Cook, H.M. Science (1981) [Pubmed]
  21. Interaction of the Pseudomonas aeruginosa secretory products pyocyanin and pyochelin generates hydroxyl radical and causes synergistic damage to endothelial cells. Implications for Pseudomonas-associated tissue injury. Britigan, B.E., Roeder, T.L., Rasmussen, G.T., Shasby, D.M., McCormick, M.L., Cox, C.D. J. Clin. Invest. (1992) [Pubmed]
  22. Oxalate transport by anion exchange across rabbit ileal brush border. Knickelbein, R.G., Aronson, P.S., Dobbins, J.W. J. Clin. Invest. (1986) [Pubmed]
  23. Evidence for size and charge permselectivity of rat ascending colon. Effects of ricinoleate and bile salts on oxalic acid and neutral sugar transport. Kathpalia, S.C., Favus, M.J., Coe, F.L. J. Clin. Invest. (1984) [Pubmed]
  24. Regulation of rat liver hydroxymethylglutaryl coenzyme A reductase by a new class of noncompetitive inhibitors. Effects of dichloroacetate and related carboxylic acids on enzyme activity. Stacpoole, P.W., Harwood, H.J., Varnado, C.E. J. Clin. Invest. (1983) [Pubmed]
  25. Effect of bile salts and fatty acids on the colonic absorption of oxalate. Dobbins, J.W., Binder, H.J. Gastroenterology (1976) [Pubmed]
  26. Calcium uptake and release by isolated cortices and microsomes from the unfertilized egg of the sea urchin Strongylocentrotus droebachiensis. Oberdorf, J.A., Head, J.F., Kaminer, B. J. Cell Biol. (1986) [Pubmed]
  27. Specificity of anion exchange mediated by mouse Slc26a6. Jiang, Z., Grichtchenko, I.I., Boron, W.F., Aronson, P.S. J. Biol. Chem. (2002) [Pubmed]
  28. Functional comparison of mouse slc26a6 anion exchanger with human SLC26A6 polypeptide variants: differences in anion selectivity, regulation, and electrogenicity. Chernova, M.N., Jiang, L., Friedman, D.J., Darman, R.B., Lohi, H., Kere, J., Vandorpe, D.H., Alper, S.L. J. Biol. Chem. (2005) [Pubmed]
  29. Functional characterization of three novel tissue-specific anion exchangers SLC26A7, -A8, and -A9. Lohi, H., Kujala, M., Makela, S., Lehtonen, E., Kestila, M., Saarialho-Kere, U., Markovich, D., Kere, J. J. Biol. Chem. (2002) [Pubmed]
  30. Molecular characterization of the murine Slc26a6 anion exchanger: functional comparison with Slc26a1. Xie, Q., Welch, R., Mercado, A., Romero, M.F., Mount, D.B. Am. J. Physiol. Renal Physiol. (2002) [Pubmed]
  31. Expression of bone matrix proteins in urolithiasis model rats. Yasui, T., Fujita, K., Sasaki, S., Sato, M., Sugimoto, M., Hirota, S., Kitamura, Y., Nomura, S., Kohri, K. Urol. Res. (1999) [Pubmed]
  32. Complex pathogenesis of hyperoxaluria after jejunoileal bypass surgery. Oxalogenic substances in diet contribute to urinary oxalate. Hofmann, A.F., Laker, M.F., Dharmsathaphorn, K., Sherr, H.P., Lorenzo, D. Gastroenterology (1983) [Pubmed]
  33. Signal transduction in human epithelial cells infected with attaching and effacing Escherichia coli in vitro. Dytoc, M., Fedorko, L., Sherman, P.M. Gastroenterology (1994) [Pubmed]
  34. Evidence suggesting hyperoxaluria as a cause of nephrocalcinosis in phosphate-treated hypophosphataemic rickets. Reusz, G.S., Latta, K., Hoyer, P.F., Byrd, D.J., Ehrich, J.H., Brodehl, J. Lancet (1990) [Pubmed]
  35. Ca2+-sequestering smooth endoplasmic reticulum in an invertebrate photoreceptor. II. Its properties as revealed by microphotometric measurements. Walz, B. J. Cell Biol. (1982) [Pubmed]
WikiGenes - Universities