The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Impact of cblB mutations on the function of ATP:cob(I)alamin adenosyltransferase in disorders of vitamin B12 metabolism.

ATP:cob(I)alamin adenosyltransferase (MMAB protein; methylmalonic aciduria type B) is an enzyme of vitamin B(12) metabolism that converts reduced cob(I)alamin to the adenosylcobalamin co-factor required for the functional activity of methylmalonyl-CoA mutase. Mutations in the human MMAB gene result in a block in adenosylcobalamin synthesis and are responsible for the cblB complementation group of inherited vitamin B(12) disorders. In this study, we examined the impact of several mutations, previously identified in cblB patients and clustered within a small, highly conserved region in MMAB. We confirmed mitochondrial expression of MMAB in human cells and showed that two mutations, R186W and E193K, were associated with absent protein by Western blot, while one, R191W, coupled with another point mutation, produced a protein in patient fibroblasts. Wild type MMAB and all four mutant proteins were stably expressed at high level as GST-fusion proteins, but only the R191W protein was enzymatically active. It showed an elevated K(m) of 320 microM (vs 6.8 microM for wild type enzyme) for ATP and 60 microM (vs 3.7 microM) for cob(I)alamin, with a reduction in k(cat) for both substrates. Circular dichroism spectroscopy revealed that three mutant proteins examined retained a alpha-helical structure as for the wild type protein. Characterization of MMAB will contribute to our understanding of cobalamin processing in mammalian cells and of disease mechanisms in the genetic disorders.[1]

References

  1. Impact of cblB mutations on the function of ATP:cob(I)alamin adenosyltransferase in disorders of vitamin B12 metabolism. Zhang, J., Dobson, C.M., Wu, X., Lerner-Ellis, J., Rosenblatt, D.S., Gravel, R.A. Mol. Genet. Metab. (2006) [Pubmed]
 
WikiGenes - Universities