The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Characterizing challenging microcrystalline solids with solid-state NMR shift tensor and synchrotron X-ray powder diffraction data: structural analysis of ambuic acid.

Synchrotron X-ray powder diffraction and solid-state (13)C NMR shift tensor data are combined to provide a unique path to structure in microcrystalline organic solids. Analysis is demonstrated on ambuic acid powder, a widely occurring natural product, to provide the complete crystal structure. The NMR data verify phase purity, specify one molecule per asymmetric unit, and provide an initial structural model including relative stereochemistry and molecular conformation. A refinement of X-ray data from the initial model establishes that ambuic acid crystallizes in the P2(1) space group with unit cell parameters a = 15.5047(7), b = 4.3904(2), and c = 14.1933(4) A and beta = 110.3134(3) degrees . This combined analysis yields structural improvements at two dihedral angles over prior NMR predictions with differences of 103 degrees and 37 degrees found. Only minor differences of +/-5.5 degrees , on average, are observed at all remaining dihedral angles. Predicted hydroxyl hydrogen-bonding orientations also fit NMR predictions within +/-6.9 degrees . This refinement corrects chemical shift assignments at two carbons and reduces the NMR error by approximately 16%. This work demonstrates that the combination of long-range order information from synchrotron powder diffraction data together with the accurate shorter range structure given by solid-state NMR measurements is a powerful tool for studying challenging organic solids.[1]


WikiGenes - Universities