The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

AKAP-Lbc: a molecular scaffold for the integration of cyclic AMP and Rho transduction pathways.

A Kinase-anchoring proteins (AKAPs) are a family of functionally related proteins involved in the targeting of the PKA holoenzyme towards specific physiological substrates. We have recently identified a novel anchoring protein expressed in cardiomyocytes, called AKAP-Lbc, that functions as a PKA-targeting protein as well as a guanine nucleotide exchange factor (GEF) that activates the GTPase RhoA. Here, we discuss the most recent findings elucidating the molecular mechanisms and the transduction pathways involved in the regulation of the AKAP-Lbc signaling complex inside cells. We could show that AKAP-Lbc is regulated in a bi-directional manner by signals that activate or deactivate its Rho-GEF activity. Activation of AKAP-Lbc occurs in response to agonists that stimulate G proteins coupled receptors linked to the heterotrimeric G protein G12, whereas inactivation occurs through mechanisms that require phosphorylation of AKAP-Lbc by anchored PKA and subsequent recruitment of the regulatory protein 14-3-3. Interestingly, we could demonstrate that AKAP-Lbc can form homo-oligomers inside cells and that 14-3-3 can inhibit the Rho-GEF activity of AKAP-Lbc only when the anchoring protein adopts an oligomeric conformation. These findings reveal the molecular architecture of the AKAP-Lbc transduction complex and provide a mechanistic explanation of how upstream signaling pathways can be integrated within the AKAP-Lbc transduction complex to precisely modulate the activation of Rho.[1]

References

  1. AKAP-Lbc: a molecular scaffold for the integration of cyclic AMP and Rho transduction pathways. Diviani, D., Baisamy, L., Appert-Collin, A. Eur. J. Cell Biol. (2006) [Pubmed]
 
WikiGenes - Universities