Binding of laminin alpha1-chain LG4-5 domain to alpha-dystroglycan causes tyrosine phosphorylation of syntrophin to initiate Rac1 signaling.
Previously, a signaling pathway was described [Oak, Zhou, and Jarrett (2003) J. Biol. Chem. 278, 39287-39295] that links matrix laminin binding on the outside of the sarcolemma to Grb2 binding to syntrophin on the inside surface of the sarcolemma and by way of Grb2-Sos1-Rac1-PAK1-JNK ultimately results in the phosphorylation of c-jun on Ser(65). How this signaling is initiated was investigated. Grb2- binding to syntrophin is increased by the addition of either laminin-1 or the isolated laminin alpha1 globular domain modules LG4-5, a protein referred to as E3. This identifies the LG4-5 sequences as the region of laminin responsible for signaling. Since laminin alpha1 LG4 is known to bind alpha-dystroglycan, this directly implicates alpha-dystroglycan as the laminin-signaling receptor. E3 or laminin-1 increase Grb2- binding and Rac1 activation. In the presence of E3 or laminin-1, syntrophin is phosphorylated on a tyrosine residue, and this increases and alters Grb2 binding. The alpha-dystroglycan antibody, IIH6, which blocks binding of laminins to alpha-dystroglycan, blocks both the laminin-induced Sos1/2 recruitment and syntrophin phosphorylation, showing that it is alpha-dystroglycan binding the LG4-5 region of laminin that is responsible. The C-terminal SH3 domain of Grb2 (C-SH3) binds only to nonphosphorylated syntrophin, and phosphorylation causes the Grb2 SH2 domain to bind and prevents SH3 binding. Syntrophin, tyrosine phosphate, beta-dystroglycan, and Rac1 all co-localize to the sarcolemma of rat muscle sections. A model for how this phosphorylation may initiate downstream events in laminin signaling is presented.[1]References
- Binding of laminin alpha1-chain LG4-5 domain to alpha-dystroglycan causes tyrosine phosphorylation of syntrophin to initiate Rac1 signaling. Zhou, Y.W., Thomason, D.B., Gullberg, D., Jarrett, H.W. Biochemistry (2006) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg