The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Species- and strain-specific control of a complex, flexible regulon by Bordetella BvgAS.

The Bordetella master virulence regulatory system, BvgAS, controls a spectrum of gene expression states, including the virulent Bvg(+) phase, the avirulent Bvg(-) phase, and at least one Bvg-intermediate (Bvg(i)) phase. We set out to define the species- and strain-specific features of this regulon based on global gene expression profiling. Rather than functioning as a switch, Bvg controls a remarkable continuum of gene expression states, with hundreds of genes maximally expressed in intermediate phases between the Bvg(+) and Bvg(-) poles. Comparative analysis of Bvg regulation in B. pertussis and B. bronchiseptica revealed a relatively conserved Bvg(+) phase transcriptional program and identified previously uncharacterized candidate virulence factors. In contrast, control of Bvg(-)- and Bvg(i)-phase genes diverged substantially between species; regulation of metabolic, transporter, and motility loci indicated an increased capacity in B. bronchiseptica, compared to B. pertussis, for ex vivo adaptation. Strain comparisons also demonstrated variation in gene expression patterns within species. Among the genes with the greatest variability in patterns of expression, predicted promoter sequences were nearly identical. Our data suggest that the complement of transcriptional regulators is largely responsible for transcriptional diversity. In support of this hypothesis, many putative transcriptional regulators that were Bvg regulated in B. bronchiseptica were deleted, inactivated, or unregulated by BvgAS in B. pertussis. We propose the concept of a "flexible regulon." This flexible regulon may prove to be important for pathogen evolution and the diversification of host range specificity.[1]

References

  1. Species- and strain-specific control of a complex, flexible regulon by Bordetella BvgAS. Cummings, C.A., Bootsma, H.J., Relman, D.A., Miller, J.F. J. Bacteriol. (2006) [Pubmed]
 
WikiGenes - Universities