The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Bordetella


Psychiatry related information on Bordetella


High impact information on Bordetella


Chemical compound and disease context of Bordetella


Biological context of Bordetella


Anatomical context of Bordetella


Gene context of Bordetella

  • In humans and dogs the effects of NPY or PYY were abolished by treatment of cells with Bordetella pertussis toxin, clearly indicating the involvement of a Gi protein in the antilipolytic effects [27].
  • The levels of expression of mRNA for a polycyclic aromatic hydrocarbon-inducible (CYP1A2) and an ethanol-inducible (CYP2E1) form of P-450 were reduced by 70% to 80% 8 to 12 hr after vaccination or Bordetella pertussis endotoxin administration [28].
  • In contrast, LTR72, a partially detoxified mutant, enhanced Th2 responses and when administered intranasally to mice before infection with Bordetella pertussis suppressed Th1 responses and delayed bacterial clearance from the lungs [29].
  • The bvg locus contains two genes, bvgA and bvgS, which control the expression of the virulence-associated genes in Bordetella species by a system similar to the two-component systems used by a variety of bacterial species to respond to environmental stimuli [30].
  • Here we present the structure of the bacterial FB188 HDAH (histone deacetylase-like amidohydrolase from Bordetella/Alcaligenes strain FB188) that reveals high sequential and functional homology to human class 2 HDACs [31].

Analytical, diagnostic and therapeutic context of Bordetella


  1. Structure of Bordetella pertussis virulence factor P.69 pertactin. Emsley, P., Charles, I.G., Fairweather, N.F., Isaacs, N.W. Nature (1996) [Pubmed]
  2. ExoY, an adenylate cyclase secreted by the Pseudomonas aeruginosa type III system. Yahr, T.L., Vallis, A.J., Hancock, M.K., Barbieri, J.T., Frank, D.W. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  3. The architecture of parallel beta-helices and related folds. Jenkins, J., Pickersgill, R. Prog. Biophys. Mol. Biol. (2001) [Pubmed]
  4. Relaxed acyl chain specificity of Bordetella UDP-N-acetylglucosamine acyltransferases. Sweet, C.R., Preston, A., Toland, E., Ramirez, S.M., Cotter, R.J., Maskell, D.J., Raetz, C.R. J. Biol. Chem. (2002) [Pubmed]
  5. Toxicity of Bordetella avium beta-cystathionase toward MC3T3-E1 osteogenic cells. Gentry-Weeks, C.R., Keith, J.M., Thompson, J. J. Biol. Chem. (1993) [Pubmed]
  6. Ectopic expression of the flagellar regulon alters development of the Bordetella-host interaction. Akerley, B.J., Cotter, P.A., Miller, J.F. Cell (1995) [Pubmed]
  7. ADP-ribosyltransferase activity of pertussis toxin and immunomodulation by Bordetella pertussis. Black, W.J., Munoz, J.J., Peacock, M.G., Schad, P.A., Cowell, J.L., Burchall, J.J., Lim, M., Kent, A., Steinman, L., Falkow, S. Science (1988) [Pubmed]
  8. Phagocyte impotence caused by an invasive bacterial adenylate cyclase. Confer, D.L., Eaton, J.W. Science (1982) [Pubmed]
  9. Role of adhesin release for mucosal colonization by a bacterial pathogen. Coutte, L., Alonso, S., Reveneau, N., Willery, E., Quatannens, B., Locht, C., Jacob-Dubuisson, F. J. Exp. Med. (2003) [Pubmed]
  10. The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the alpha(M)beta(2) integrin (CD11b/CD18). Guermonprez, P., Khelef, N., Blouin, E., Rieu, P., Ricciardi-Castagnoli, P., Guiso, N., Ladant, D., Leclerc, C. J. Exp. Med. (2001) [Pubmed]
  11. Protective immunity to Bordetella pertussis requires both B cells and CD4(+) T cells for key functions other than specific antibody production. Leef, M., Elkins, K.L., Barbic, J., Shahin, R.D. J. Exp. Med. (2000) [Pubmed]
  12. Activation of rho through a cross-link with polyamines catalyzed by Bordetella dermonecrotizing toxin. Masuda, M., Betancourt, L., Matsuzawa, T., Kashimoto, T., Takao, T., Shimonishi, Y., Horiguchi, Y. EMBO J. (2000) [Pubmed]
  13. Pertussis holotoxoid formed in vitro with a genetically deactivated S1 subunit. Bartley, T.D., Whiteley, D.W., Mar, V.L., Burns, D.L., Burnette, W.N. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  14. Bordetella pertussis tracheal cytotoxin and other muramyl peptides: distinct structure-activity relationships for respiratory epithelial cytopathology. Luker, K.E., Collier, J.L., Kolodziej, E.W., Marshall, G.R., Goldman, W.E. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  15. Activation of phospholipase D by interleukin-8 in human neutrophils. Sozzani, S., Agwu, D.E., Ellenburg, M.D., Locati, M., Rieppi, M., Rojas, A., Mantovani, A., McPhail, L.C. Blood (1994) [Pubmed]
  16. Activation of nitric oxide release and oxidative metabolism by leukotrienes B4, C4, and D4 in human polymorphonuclear leukocytes. Lärfars, G., Lantoine, F., Devynck, M.A., Palmblad, J., Gyllenhammar, H. Blood (1999) [Pubmed]
  17. Phosphorylated BvgA is sufficient for transcriptional activation of virulence-regulated genes in Bordetella pertussis. Steffen, P., Goyard, S., Ullmann, A. EMBO J. (1996) [Pubmed]
  18. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Karimova, G., Pidoux, J., Ullmann, A., Ladant, D. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  19. Complete genomic sequence of Pasteurella multocida, Pm70. May, B.J., Zhang, Q., Li, L.L., Paustian, M.L., Whittam, T.S., Kapur, V. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  20. The effect of Bordetella pertussis on the antibody response in mice to type III pneumococcal polysaccharide. Kong, A.S., Morse, S.I. J. Immunol. (1976) [Pubmed]
  21. The conserved lysine 860 in the additional fatty-acylation site of Bordetella pertussis adenylate cyclase is crucial for toxin function independently of its acylation status. Basar, T., Havlícek, V., Bezousková, S., Halada, P., Hackett, M., Sebo, P. J. Biol. Chem. (1999) [Pubmed]
  22. Dissecting human T cell responses against Bordetella species. De Magistris, M.T., Romano, M., Nuti, S., Rappuoli, R., Tagliabue, A. J. Exp. Med. (1988) [Pubmed]
  23. Eradication of established tumors by vaccination with recombinant Bordetella pertussis adenylate cyclase carrying the human papillomavirus 16 E7 oncoprotein. Préville, X., Ladant, D., Timmerman, B., Leclerc, C. Cancer Res. (2005) [Pubmed]
  24. Inhibition of monocyte oxidative responses by Bordetella pertussis adenylate cyclase toxin. Pearson, R.D., Symes, P., Conboy, M., Weiss, A.A., Hewlett, E.L. J. Immunol. (1987) [Pubmed]
  25. The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Properties and function of the purified protein. Katada, T., Bokoch, G.M., Northup, J.K., Ui, M., Gilman, A.G. J. Biol. Chem. (1984) [Pubmed]
  26. Interaction of calcium with Bordetella pertussis adenylate cyclase toxin. Characterization of multiple calcium-binding sites and calcium-induced conformational changes. Rose, T., Sebo, P., Bellalou, J., Ladant, D. J. Biol. Chem. (1995) [Pubmed]
  27. Neuropeptide Y and peptide YY inhibit lipolysis in human and dog fat cells through a pertussis toxin-sensitive G protein. Valet, P., Berlan, M., Beauville, M., Crampes, F., Montastruc, J.L., Lafontan, M. J. Clin. Invest. (1990) [Pubmed]
  28. Modulation of hepatic mRNA levels after administration of lipopolysaccharide and diphtheria and tetanus toxoids and pertussis vaccine adsorbed (DTP vaccine) to mice. Ansher, S.S., Thompson, W. Hepatology (1994) [Pubmed]
  29. Modulation of innate and acquired immune responses by Escherichia coli heat-labile toxin: distinct pro- and anti-inflammatory effects of the nontoxic AB complex and the enzyme activity. Ryan, E.J., McNeela, E., Pizza, M., Rappuoli, R., O'Neill, L., Mills, K.H. J. Immunol. (2000) [Pubmed]
  30. Structural and genetic analysis of the bvg locus in Bordetella species. Aricò, B., Scarlato, V., Monack, D.M., Falkow, S., Rappuoli, R. Mol. Microbiol. (1991) [Pubmed]
  31. Crystal structure of a bacterial class 2 histone deacetylase homologue. Nielsen, T.K., Hildmann, C., Dickmanns, A., Schwienhorst, A., Ficner, R. J. Mol. Biol. (2005) [Pubmed]
  32. Serologic diagnosis of pertussis: evaluation of pertussis toxin and other antigens in enzyme-linked immunosorbent assay. Mertsola, J., Ruuskanen, O., Kuronen, T., Meurman, O., Viljanen, M.K. J. Infect. Dis. (1990) [Pubmed]
  33. Vag8, a Bordetella pertussis bvg-regulated protein. Finn, T.M., Amsbaugh, D.F. Infect. Immun. (1998) [Pubmed]
  34. Characterization of pertussis toxin analogs containing mutations in B-oligomer subunits. Loosmore, S., Zealey, G., Cockle, S., Boux, H., Chong, P., Yacoob, R., Klein, M. Infect. Immun. (1993) [Pubmed]
  35. Rapid typing of Bordetella pertussis pertussis toxin gene variants by LightCycler real-time PCR and fluorescence resonance energy transfer hybridization probe melting curve analysis. Mäkinen, J., Mertsola, J., Viljanen, M.K., Arvilommi, H., He, Q. J. Clin. Microbiol. (2002) [Pubmed]
  36. Antigenic divergence of Bordetella pertussis isolates in Taiwan. Yao, S.M., Lin, Y.C., Chou, C.Y., Chen, Y.Y., Hsiao, M.J., Chen, H.Y., Yan, J.J., Su, H.P., Li, S.Y. J. Clin. Microbiol. (2005) [Pubmed]
WikiGenes - Universities