The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Loss of sphingosine kinase-1 activates the intrinsic pathway of programmed cell death: modulation of sphingolipid levels and the induction of apoptosis.

Activation of sphingosine kinase-1 (SK1) by overexpression or agonist stimulation promotes cell proliferation, survival, and anti-apoptosis. Studies on the function of endogenous SK1 are lacking. Endogenous SK1 has been shown to be down-regulated under stress, and knockdown of the enzyme reduces the percentage of viable MCF-7 breast cancer cells (Taha, T. A. et al. 2004. J. Biol. Chem. 279, 20546-20554). In this study, we examined the mechanisms by which SK1 loss affects the growth of cells. Knockdown of the enzyme by small interfering RNA caused cell cycle arrest and induced apoptosis. Cell death involved effector caspase activation, cytochrome c release and Bax oligomerization in the mitochondrial membrane, thus placing SK1 knockdown upstream of the mitochondrial pathway of apoptosis. SK1 knockdown also induced significant increases in ceramide levels in whole cells and in mitochondria enriched fractions of cells. Inhibition of de novo sphingolipid biosynthesis with myriocin significantly attenuated Bax oligomerization and downstream caspase activation after SK1 loss. These studies for the first time implicate endogenous SK1 as an important survival enzyme in MCF-7 cells and link the biological consequences of knocking down the enzyme to its biochemical role as a regulator of sphingolipid metabolism.[1]

References

 
WikiGenes - Universities