The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Overexpression of PRE1 and its homologous genes activates Gibberellin-dependent responses in Arabidopsis thaliana.

Gibberellins control various aspects of growth and development. Here, we identified a gene, designated paclobutrazol resistance1 (PRE1), by screening Arabidopsis activation-tagged lines. PRE1 encodes a helix-loop-helix protein and belongs to a small gene family. Physiological and genetic analysis indicated that overexpression of PRE1 altered various aspects of gibberellin-dependent responses such as germination, elongation of hypocotyl/petiole, floral induction and fruit development, and suppressed gibberellin-deficient phenotypes of the ga2 mutant. Expression of some gibberellin-responsive genes was also affected by PRE1. Expression of PRE1 was shown to be early gibberellin inducible in the wild-type plants and under control of SPY and GAI, upstream negative regulators of gibberellin signaling. The shortened hypocotyl length phenotype of the gai-1 mutant was suppressed by PRE1 overexpression. Ectopic overexpression of each of the four PRE1-related genes conferred pleiotropic phenotypes similar to PRE1 overexpression, indicative of overlapping functions among the PRE gene family. Our results of gain-of-function studies suggest that PRE genes may have a regulatory role in gibberellin-dependent development in Arabidopsis thaliana.[1]

References

  1. Overexpression of PRE1 and its homologous genes activates Gibberellin-dependent responses in Arabidopsis thaliana. Lee, S., Lee, S., Yang, K.Y., Kim, Y.M., Park, S.Y., Kim, S.Y., Soh, M.S. Plant Cell Physiol. (2006) [Pubmed]
 
WikiGenes - Universities