The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

SNI1  -  negative regulator of systemic acquired...

Arabidopsis thaliana

Synonyms: F28J12.3, F28J12_3, INDUCIBLE 1, SUPPRESSOR OF NPR1-1, SUPPRESSOR OF NPR1-1, INDUCIBLE 1
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of SNI1

 

High impact information on SNI1

 

Chemical compound and disease context of SNI1

  • One of these clones (termed PAR-1 for photoassimilate-responsive) displayed features similar to pathogenesis-related proteins: Hybridizing transcripts, 1.2 and 1.0 kb in length, were strongly inducible by salicylate and accumulated in tobacco plants after infection with potato virus Y (PVY) both in infected and uninfected systemic leaves [9].
  • Enzyme assays of inducible GUS activity in transgenic Arabidopsis and tobacco plants showed that GUS activity directed by both kin1 and cor6.6 promoters was significantly induced by ABA, dehydration and osmoticum, but not by low temperature [10].
  • To facilitate the identification of the rate-limiting step(s) in the tocopherol biosynthetic pathway through the modulation of transgene expression, we established an inducible expression system in Synechocystis sp. strain PCC 6803 [11].
 

Biological context of SNI1

 

Anatomical context of SNI1

  • First, we established a hypersensitive cell death assay for protoplasts using the membrane-impermeable, nuclear-staining dye, YO-PRO-1, and transgenic Arabidopsis plants that carry an inducible avrRpt2 gene [16].
  • We have isolated a haploid cell line of N. plumbaginifolia, hNP 588, that is constitutive and not inducible for nitrate reductase [17].
  • The results concur with previous studies showing a high-affinity NO3- transport system in Arabidopsis that is inducible following a period of nitrogen-limiting growth, but they underline the importance of voltage as a kinetic factor controlling NO3- transport at the plant plasma membrane [18].
  • GUS assays and RNA blot analysis showed that expression of the OsCHLH gene is light inducible, while TEM analysis revealed that the thylakoid membrane of the mutant chloroplasts is underdeveloped [19].
  • The PEN2 glycosyl hydrolase localizes to peroxisomes and acts as a component of an inducible preinvasion resistance mechanism [20].
 

Associations of SNI1 with chemical compounds

 

Regulatory relationships of SNI1

 

Other interactions of SNI1

  • The Arabidopsis NPR1 gene is essential in activating systemic, inducible plant defense responses [27].
  • The RPT2 gene is light inducible; encodes a novel protein with putative phosphorylation sites, a nuclear localization signal, a BTB/POZ domain, and a coiled-coil domain; and belongs to a large gene family that includes the recently isolated NPH3 gene [28].
  • Constitutive and inducible over-expression of OBP2 activates expression of CYP83B1 [29].
  • By contrast, inducible expression of miR164 in wild-type plants led to decreased NAC1 mRNA levels and reduced lateral root emergence [30].
  • PHR1 is a single-copy gene and is not expressed in dark-grown etiolated seedlings: the message is light inducible, which is similar to the expression profile for photoreactivation activity in plants [31].
 

Analytical, diagnostic and therapeutic context of SNI1

References

  1. det1, cop1, and cop9 mutations cause inappropriate expression of several gene sets. Mayer, R., Raventos, D., Chua, N.H. Plant Cell (1996) [Pubmed]
  2. Characterization of an Arabidopsis cDNA for a soluble epoxide hydrolase gene that is inducible by auxin and water stress. Kiyosue, T., Beetham, J.K., Pinot, F., Hammock, B.D., Yamaguchi-Shinozaki, K., Shinozaki, K. Plant J. (1994) [Pubmed]
  3. A gateway cloning vector set for high-throughput functional analysis of genes in planta. Curtis, M.D., Grossniklaus, U. Plant Physiol. (2003) [Pubmed]
  4. Identification of a novel Pseudomonas syringae Psy61 effector with virulence and avirulence functions by a HrpL-dependent promoter-trap assay. Losada, L., Sussan, T., Pak, K., Zeyad, S., Rozenbaum, I., Hutcheson, S.W. Mol. Plant Microbe Interact. (2004) [Pubmed]
  5. Analysis of the involvement of an inducible Arabidopsis RNA-dependent RNA polymerase in antiviral defense. Yu, D., Fan, B., MacFarlane, S.A., Chen, Z. Mol. Plant Microbe Interact. (2003) [Pubmed]
  6. Identification and cloning of a negative regulator of systemic acquired resistance, SNI1, through a screen for suppressors of npr1-1. Li, X., Zhang, Y., Clarke, J.D., Li, Y., Dong, X. Cell (1999) [Pubmed]
  7. Modulation of cell proliferation by heterotrimeric G protein in Arabidopsis. Ullah, H., Chen, J.G., Young, J.C., Im, K.H., Sussman, M.R., Jones, A.M. Science (2001) [Pubmed]
  8. A comprehensive structure-function analysis of Arabidopsis SNI1 defines essential regions and transcriptional repressor activity. Mosher, R.A., Durrant, W.E., Wang, D., Song, J., Dong, X. Plant Cell (2006) [Pubmed]
  9. A simplified procedure for the subtractive cDNA cloning of photoassimilate-responding genes: isolation of cDNAs encoding a new class of pathogenesis-related proteins. Herbers, K., Mönke, G., Badur, R., Sonnewald, U. Plant Mol. Biol. (1995) [Pubmed]
  10. Promoters from kin1 and cor6.6, two homologous Arabidopsis thaliana genes: transcriptional regulation and gene expression induced by low temperature, ABA, osmoticum and dehydration. Wang, H., Datla, R., Georges, F., Loewen, M., Cutler, A.J. Plant Mol. Biol. (1995) [Pubmed]
  11. Application of the Synechococcus nirA promoter to establish an inducible expression system for engineering the Synechocystis tocopherol pathway. Qi, Q., Hao, M., Ng, W.O., Slater, S.C., Baszis, S.R., Weiss, J.D., Valentin, H.E. Appl. Environ. Microbiol. (2005) [Pubmed]
  12. Dynamic and Compensatory Responses of Arabidopsis Shoot and Floral Meristems to CLV3 Signaling. Müller, R., Borghi, L., Kwiatkowska, D., Laufs, P., Simon, R. Plant Cell (2006) [Pubmed]
  13. Arabidopsis PLC1 is required for secondary responses to abscisic acid signals. Sanchez, J.P., Chua, N.H. Plant Cell (2001) [Pubmed]
  14. Ectopic expression of the Arabidopsis transcriptional activator Athb-1 alters leaf cell fate in tobacco. Aoyama, T., Dong, C.H., Wu, Y., Carabelli, M., Sessa, G., Ruberti, I., Morelli, G., Chua, N.H. Plant Cell (1995) [Pubmed]
  15. {gamma}-Tubulin Is Essential for Acentrosomal Microtubule Nucleation and Coordination of Late Mitotic Events in Arabidopsis. Binarová, P., Cenklová, V., Procházková, J., Doskocilová, A., Volc, J., Vrlík, M., Bögre, L. Plant Cell (2006) [Pubmed]
  16. Direct delivery of bacterial avirulence proteins into resistant Arabidopsis protoplasts leads to hypersensitive cell death. Wu, Y., Wood, M.D., Tao, Y., Katagiri, F. Plant J. (2003) [Pubmed]
  17. Constitutive non-inducible expression of the Arabidopsis thaliana Nia 2 gene in two nitrate reductase mutants of Nicotiana plumbaginifolia. Kaye, C., Crawford, N.M., Malmberg, R.L. Plant Mol. Biol. (1997) [Pubmed]
  18. NO3- transport across the plasma membrane of Arabidopsis thaliana root hairs: kinetic control by pH and membrane voltage. Meharg, A.A., Blatt, M.R. J. Membr. Biol. (1995) [Pubmed]
  19. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Jung, K.H., Hur, J., Ryu, C.H., Choi, Y., Chung, Y.Y., Miyao, A., Hirochika, H., An, G. Plant Cell Physiol. (2003) [Pubmed]
  20. Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Lipka, V., Dittgen, J., Bednarek, P., Bhat, R., Wiermer, M., Stein, M., Landtag, J., Brandt, W., Rosahl, S., Scheel, D., Llorente, F., Molina, A., Parker, J., Somerville, S., Schulze-Lefert, P. Science (2005) [Pubmed]
  21. Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. Huang, N.C., Liu, K.H., Lo, H.J., Tsay, Y.F. Plant Cell (1999) [Pubmed]
  22. The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Pandey, G.K., Cheong, Y.H., Kim, K.N., Grant, J.J., Li, L., Hung, W., D'Angelo, C., Weinl, S., Kudla, J., Luan, S. Plant Cell (2004) [Pubmed]
  23. Promoter trap markers differentiate structural and positional components of polar development in Arabidopsis. Topping, J.F., Lindsey, K. Plant Cell (1997) [Pubmed]
  24. SUT2, a putative sucrose sensor in sieve elements. Barker, L., Kühn, C., Weise, A., Schulz, A., Gebhardt, C., Hirner, B., Hellmann, H., Schulze, W., Ward, J.M., Frommer, W.B. Plant Cell (2000) [Pubmed]
  25. Overexpression of an endogenous thionin enhances resistance of Arabidopsis against Fusarium oxysporum. Epple, P., Apel, K., Bohlmann, H. Plant Cell (1997) [Pubmed]
  26. Cip4, a new COP1 target, is a nucleus-localized positive regulator of Arabidopsis photomorphogenesis. Yamamoto, Y.Y., Deng, X., Matsui, M. Plant Cell (2001) [Pubmed]
  27. The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Després, C., DeLong, C., Glaze, S., Liu, E., Fobert, P.R. Plant Cell (2000) [Pubmed]
  28. RPT2. A signal transducer of the phototropic response in Arabidopsis. Sakai, T., Wada, T., Ishiguro, S., Okada, K. Plant Cell (2000) [Pubmed]
  29. DOF transcription factor AtDof1.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis. Skirycz, A., Reichelt, M., Burow, M., Birkemeyer, C., Rolcik, J., Kopka, J., Zanor, M.I., Gershenzon, J., Strnad, M., Szopa, J., Mueller-Roeber, B., Witt, I. Plant J. (2006) [Pubmed]
  30. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development. Guo, H.S., Xie, Q., Fei, J.F., Chua, N.H. Plant Cell (2005) [Pubmed]
  31. An enzyme similar to animal type II photolyases mediates photoreactivation in Arabidopsis. Ahmad, M., Jarillo, J.A., Klimczak, L.J., Landry, L.G., Peng, T., Last, R.L., Cashmore, A.R. Plant Cell (1997) [Pubmed]
  32. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Rabbani, M.A., Maruyama, K., Abe, H., Khan, M.A., Katsura, K., Ito, Y., Yoshiwara, K., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K. Plant Physiol. (2003) [Pubmed]
  33. Dissection of the AtNRT2.1:AtNRT2.2 Inducible High-Affinity Nitrate Transporter Gene Cluster. Li, W., Wang, Y., Okamoto, M., Crawford, N.M., Siddiqi, M.Y., Glass, A.D. Plant Physiol. (2007) [Pubmed]
  34. A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Park, J.H., Halitschke, R., Kim, H.B., Baldwin, I.T., Feldmann, K.A., Feyereisen, R. Plant J. (2002) [Pubmed]
  35. Use of differential display for the identification of touch-induced genes from an ethylene-insensitive Arabidopsis mutant and partial characterization of these genes. Chotikacharoensuk, T., Arteca, R.N., Arteca, J.M. J. Plant Physiol. (2006) [Pubmed]
 
WikiGenes - Universities