The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Probing mucin-type O-linked glycosylation in living animals.

Changes in O-linked protein glycosylation are known to correlate with disease states but are difficult to monitor in a physiological setting because of a lack of experimental tools. Here, we report a technique for rapid profiling of O-linked glycoproteins in living animals by metabolic labeling with N-azidoacetylgalactosamine (GalNAz) followed by Staudinger ligation with phosphine probes. After injection of mice with a peracetylated form of GalNAz, azide-labeled glycoproteins were observed in a variety of tissues, including liver, kidney, and heart, in serum, and on isolated splenocytes. B cell glycoproteins were robustly labeled with GalNAz but T cell glycoproteins were not, suggesting fundamental differences in glycosylation machinery or metabolism. Furthermore, GalNAz-labeled B cells could be selectively targeted with a phosphine probe by Staudinger ligation within the living animal. Metabolic labeling with GalNAz followed by Staudinger ligation provides a means for proteomic analysis of this posttranslational modification and for identifying O-linked glycoprotein fingerprints associated with disease.[1]

References

  1. Probing mucin-type O-linked glycosylation in living animals. Dube, D.H., Prescher, J.A., Quang, C.N., Bertozzi, C.R. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
 
WikiGenes - Universities