The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Sub-microsecond protein folding.

We have investigated the structure, equilibria, and folding kinetics of an engineered 35-residue subdomain of the chicken villin headpiece, an ultrafast-folding protein. Substitution of two buried lysine residues by norleucine residues stabilizes the protein by 1 kcal/mol and increases the folding rate sixfold, as measured by nanosecond laser T-jump. The folding rate at 300 K is (0.7 micros)(-1) with little or no temperature dependence, making this protein the first sub-microsecond folder, with a rate only twofold slower than the theoretically predicted speed limit. Using the 70 ns process to obtain the effective diffusion coefficient, the free energy barrier height is estimated from Kramers theory to be less than approximately 1 kcal/mol. X-ray crystallographic determination at 1A resolution shows no significant change in structure compared to the single-norleucine-substituted molecule and suggests that the increased stability is electrostatic in origin. The ultrafast folding rate, very accurate X-ray structure, and small size make this engineered villin subdomain an ideal system for simulation by atomistic molecular dynamics with explicit solvent.[1]

References

  1. Sub-microsecond protein folding. Kubelka, J., Chiu, T.K., Davies, D.R., Eaton, W.A., Hofrichter, J. J. Mol. Biol. (2006) [Pubmed]
 
WikiGenes - Universities