The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Characterization of isoforms of activin receptor-interacting protein 2 that augment activin signaling.

Activin type II receptors (ActRIIs) including ActRIIA and ActRIIB are serine/threonine kinase receptors that form complexes with type I receptors to transmit intracellular signaling of activins, nodal, myostatin and a subset of bone morphogenetic proteins. ActRIIs are unique among serine/threonine kinase receptors in that they associate with proteins having PSD-95, Discs large and ZO-1 (PDZ) domains. In our previous studies, we reported specific interactions of ActRIIs with two independent PDZ proteins named activin receptor-interacting proteins 1 and 2 ( ARIP1 and ARIP2). Overexpression of both ARIP1 and ARIP2 reduce activin-induced transcription. Here, we report the isolation of two isoforms of ARIP2 named ARIP2b and 2c. ARIP2, ARIP2b and ARIP2c recognize COOH-terminal residues of ActRIIA that match a PDZ-binding consensus motif. ARIP2 and its isoforms have one PDZ domain in the NH(2)-terminal region, and interact with ActRIIA. Although PDZ domains containing GLGF motifs of ARIP2b and 2c are identical to that of ARIP2, their COOH-terminal sequences differ from that of ARIP2. Interestingly, unlike ARIP2, overexpression of ARIP2b or 2c did not affect ActRIIA internalization. ARIP2b/2c inhibit inhibitory actions of ARIP2 on activin signaling. ARIP2 is widely distributed in mouse tissues. ARIP2b/2c is expressed in more restricted tissues such as heart, brain, kidneys and liver. Our results indicate that although both ARIP2 and ARIP2b/2c interact with activin receptors, they regulate ActRIIA function in a different manner.[1]

References

  1. Characterization of isoforms of activin receptor-interacting protein 2 that augment activin signaling. Liu, Z.H., Tsuchida, K., Matsuzaki, T., Bao, Y.L., Kurisaki, A., Sugino, H. J. Endocrinol. (2006) [Pubmed]
 
WikiGenes - Universities