Bur1/Bur2 and the Ctk complex in yeast: the split personality of mammalian P-TEFb.
Eukaryotic organisms possess a host of factors that regulate transcriptional elongation. In higher eukaryotes, the transcription factor P-TEFb not only regulates phosphorylation of the RNA polymerase II C-terminal domain, but it also inhibits the action of transcriptional repressors and is required for the association of several elongation factors with the transcribing polymerase. In the yeast Saccharomyces cerevisiae, the cyclin dependent kinases Bur1/Bur2 and Ctk complex (Ctk1, 2 and 3) are also able to impact several aspects of transcription. Together, these two kinase complexes appear to functionally reconstitute the activity of P-TEFb in yeast. Recent findings regarding the role of these kinases in histone tail modifications and transcriptional regulation is briefly reviewed below.[1]References
- Bur1/Bur2 and the Ctk complex in yeast: the split personality of mammalian P-TEFb. Wood, A., Shilatifard, A. Cell Cycle (2006) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg