Border of Notch activity establishes a boundary between the two dorsal appendage tube cell types.
Boundaries establish and maintain separate populations of cells critical for organ formation. We show that Notch signaling establishes the boundary between two types of post-mitotic epithelial cells, the Rhomboid- and the Broad-positive cells. These cells will undergo morphogenetic movements to generate the two sides of a simple organ, the dorsal appendage tube of the Drosophila egg chamber. The boundary forms due to a difference in Notch levels in adjacent cells. The Notch expression pattern mimics the boundary; Notch levels are high in Rhomboid cells and low in Broad cells. Notch(-) mutant clones generate an ectopic boundary: ectopic Rhomboid cells arise in Notch(+) cells adjacent to the Notch(-) mutant cells but not further away from the clonal border. Pangolin, a component of the Wingless pathway, is required for Broad expression and for rhomboid repression. We further show that Broad represses rhomboid cell autonomously. Our data provide a foundation for understanding how a single row of Rhomboid cells arises adjacent to the Broad cells in the dorsal appendage primordia. Generating a boundary by the Notch pathway might constitute an evolutionarily conserved first step during organ formation in many tissues.[1]References
- Border of Notch activity establishes a boundary between the two dorsal appendage tube cell types. Ward, E.J., Zhou, X., Riddiford, L.M., Berg, C.A., Ruohola-Baker, H. Dev. Biol. (2006) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg