The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Characterization of the DGAT1 mutations and the CSN1S1 promoter in the German Angeln dairy cattle population.

The identification of quantitative trait loci (QTL) and genes with influence on milk production traits has been the objective of various mapping studies in the last decade. In the centromeric region of Bos taurus autosome (BTA) 14, the acyl-CoA:diacylglycerol acyltransferase1 gene (DGAT1) has been identified as the most likely causative gene underlying a QTL for milk fat yield and content. Recently, a second polymorphism in the promoter of DGAT1 emerged as an additional source of variation. In this study, the frequencies and the effects of alleles at the DGAT1 K232A and at the DGAT1 promoter variable number of tandem repeat (VNTR) locus on BTA14, and of alleles at the CSN1S1 (alpha(S1)-casein-encoding gene) promoter on BTA6 in the German Angeln dairy cattle population were investigated. Analyzed traits were milk, fat, protein, lactose, and milk energy yield, fat, protein, lactose, and milk energy content and somatic cell score. The lysine variant of the DGAT1 K232A mutation showed significant effects for most of the milk production traits. A specific allele of the DGAT1 promoter VNTR showed significant effects on the traits lactose yield and content, milk energy content, and SCS compared with the other alleles. Additionally, a regulation mechanism between the DGAT1 K232A mutation and the DGAT1 promoter VNTR was found for fat yield and content, which could be caused by an upper physiological bound for the effects of the DGAT1 gene. At the CSN1S1 promoter, 2 of 4 alleles showed significant allele substitution effects on the milk yield traits.[1]


  1. Characterization of the DGAT1 mutations and the CSN1S1 promoter in the German Angeln dairy cattle population. Sanders, K., Bennewitz, J., Reinsch, N., Thaller, G., Prinzenberg, E.M., Kühn, C., Kalm, E. J. Dairy Sci. (2006) [Pubmed]
WikiGenes - Universities