The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Cooperative activities of Drosophila DE-Cadherin and DN-Cadherin regulate the cell motility process of ommatidial rotation.

Ommatidial rotation is a cell motility read-out of planar cell polarity (PCP) signaling in the Drosophila eye. Although the signaling aspects of PCP establishment are beginning to be unraveled, the mechanistic aspects of the associated ommatidial rotation process remain unknown. Here, we demonstrate that the Drosophila DE- and DN-cadherins have opposing effects on rotation. DE-cadherin promotes rotation, as DE-cad mutant ommatidia rotate less than wild type or not at all. By contrast, the two DN-cadherins act to restrict this movement, with ommatidia rotating too fast in the mutants. The opposing effects of DE- and DN-cadherins result in a coordinated cellular movement, enabling ommatidia of the same stage to rotate simultaneously. Genetic interactions, phenotypic analysis and localization studies indicate that EGF-receptor and Frizzled-PCP signaling feed into the regulation of cadherin activity and localization in this context. Thus, DE- and DN-cadherins integrate inputs from at least two signaling pathways, resulting in a coordinated cell movement. A similar input into mammalian E- and N-cadherins might function in the progression of diseases such as metastatic ovarian cancer.[1]

References

 
WikiGenes - Universities