The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

shg  -  shotgun

Drosophila melanogaster

Synonyms: CADH, CG3722, CT12481, Cad, CadE, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of shg

  • In the multilayered neuroectoderm, epidermal precursors, neuroblasts and ganglion mother cells occurred intermingled, attesting to the pivotal role of DE-cadherin in delamination and polarized division of neuroblasts [1].
  • We previously reported that expression of WNT7a, encoded on 3p25, was frequently downregulated in lung cancer, and that loss of E-cadherin or beta-catenin was a poor prognostic feature [2].
  • The C. elegans hmr-1 gene can encode a neuronal classic cadherin involved in the regulation of axon fasciculation [3].
  • Bt-R1a extracellular cadherin repeat 12 mediates Bacillus thuringiensis Cry1Ab binding and cytotoxicity [4].

High impact information on shg


Biological context of shg


Anatomical context of shg

  • Interestingly, the analysis of different shg alleles indicates that the requirement for shg in a given epithelium depends on the degree of its morphogenetic activity [9].
  • We report here that DE-cadherin is encoded by the shotgun (shg) gene. shg is expressed in most embryonic epithelia and decreases in cells that undergo epithelial-mesenchymal transitions like the mesoderm or neural precursors [9].
  • The shg phenotype could be phenocopied by applying EGTA or cytochalasin D, supporting the view that Ca2+-dependent adhesion and the actin cytoskeleton are instrumental for heart lumen formation [10].
  • To investigate its role in oogenesis, we generated germ-line clones homozygous for a null mutation in shotgun (shg) encoding this molecule, and examined their phenotypes, comparing with those of armadillo (arm) mutants [14].
  • It localizes to adherens junctions and binds the juxtamembrane region of DE-cadherin (DE-cad) [15].

Associations of shg with chemical compounds


Physical interactions of shg


Co-localisations of shg


Regulatory relationships of shg

  • In addition, we find that taiman and Pvf1 regulate the dynamic localization of E-cadherin in the border cells, possibly accounting for the interaction between these two pathways [27].
  • These results uncover a new role for talin in regulating cadherin-mediated cell adhesion [18].
  • We further show that expression of DE-cadherin in the gonad is regulated post-transcriptionally and that foi affects this post-transcriptional control [28].
  • Cadherin Cad99C is regulated by Hedgehog signaling in Drosophila [29].
  • We present evidence indicating escargot positively regulates transcription of the DE-cadherin gene, shotgun [30].

Other interactions of shg


Analytical, diagnostic and therapeutic context of shg


  1. The role of DE-cadherin during cellularization, germ layer formation and early neurogenesis in the Drosophila embryo. Wang, F., Dumstrei, K., Haag, T., Hartenstein, V. Dev. Biol. (2004) [Pubmed]
  2. WNT7a induces E-cadherin in lung cancer cells. Ohira, T., Gemmill, R.M., Ferguson, K., Kusy, S., Roche, J., Brambilla, E., Zeng, C., Baron, A., Bemis, L., Erickson, P., Wilder, E., Rustgi, A., Kitajewski, J., Gabrielson, E., Bremnes, R., Franklin, W., Drabkin, H.A. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  3. The C. elegans hmr-1 gene can encode a neuronal classic cadherin involved in the regulation of axon fasciculation. Broadbent, I.D., Pettitt, J. Curr. Biol. (2002) [Pubmed]
  4. Bt-R1a extracellular cadherin repeat 12 mediates Bacillus thuringiensis Cry1Ab binding and cytotoxicity. Hua, G., Jurat-Fuentes, J.L., Adang, M.J. J. Biol. Chem. (2004) [Pubmed]
  5. Regulation of invasive cell behavior by taiman, a Drosophila protein related to AIB1, a steroid receptor coactivator amplified in breast cancer. Bai, J., Uehara, Y., Montell, D.J. Cell (2000) [Pubmed]
  6. Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Usui, T., Shima, Y., Shimada, Y., Hirano, S., Burgess, R.W., Schwarz, T.L., Takeichi, M., Uemura, T. Cell (1999) [Pubmed]
  7. The fat tumor suppressor gene in Drosophila encodes a novel member of the cadherin gene superfamily. Mahoney, P.A., Weber, U., Onofrechuk, P., Biessmann, H., Bryant, P.J., Goodman, C.S. Cell (1991) [Pubmed]
  8. Links between signal transduction, transcription and adhesion in epithelial bud development. Jamora, C., DasGupta, R., Kocieniewski, P., Fuchs, E. Nature (2003) [Pubmed]
  9. shotgun encodes Drosophila E-cadherin and is preferentially required during cell rearrangement in the neurectoderm and other morphogenetically active epithelia. Tepass, U., Gruszynski-DeFeo, E., Haag, T.A., Omatyar, L., Török, T., Hartenstein, V. Genes Dev. (1996) [Pubmed]
  10. The role of cell adhesion molecules in Drosophila heart morphogenesis: faint sausage, shotgun/DE-cadherin, and laminin A are required for discrete stages in heart development. Haag, T.A., Haag, N.P., Lekven, A.C., Hartenstein, V. Dev. Biol. (1999) [Pubmed]
  11. Myosin VI is required for E-cadherin-mediated border cell migration. Geisbrecht, E.R., Montell, D.J. Nat. Cell Biol. (2002) [Pubmed]
  12. Binding site for p120/delta-catenin is not required for Drosophila E-cadherin function in vivo. Pacquelet, A., Lin, L., Rorth, P. J. Cell Biol. (2003) [Pubmed]
  13. Rac promotes epithelial cell rearrangement during tracheal tubulogenesis in Drosophila. Chihara, T., Kato, K., Taniguchi, M., Ng, J., Hayashi, S. Development (2003) [Pubmed]
  14. Phenotypic analysis of null mutants for DE-cadherin and Armadillo in Drosophila ovaries reveals distinct aspects of their functions in cell adhesion and cytoskeletal organization. Oda, H., Uemura, T., Takeichi, M. Genes Cells (1997) [Pubmed]
  15. Drosophila p120catenin plays a supporting role in cell adhesion but is not an essential adherens junction component. Myster, S.H., Cavallo, R., Anderson, C.T., Fox, D.T., Peifer, M. J. Cell Biol. (2003) [Pubmed]
  16. Drosophila E-cadherin regulates the orientation of asymmetric cell division in the sensory organ lineage. Le Borgne, R., Bellaïche, Y., Schweisguth, F. Curr. Biol. (2002) [Pubmed]
  17. Regulation of cell adhesion in the Drosophila embryo by phosphorylation of the Cadherin-Catenin-Complex. Wang, F., Hartenstein, V. Cell Tissue Res. (2006) [Pubmed]
  18. Integrin-independent repression of cadherin transcription by talin during axis formation in Drosophila. Bécam, I.E., Tanentzapf, G., Lepesant, J.A., Brown, N.H., Huynh, J.R. Nat. Cell Biol. (2005) [Pubmed]
  19. The plakin Short Stop and the RhoA GTPase are required for E-cadherin-dependent apical surface remodeling during tracheal tube fusion. Lee, S., Kolodziej, P.A. Development (2002) [Pubmed]
  20. Command and control: regulatory pathways controlling invasive behavior of the border cells. Montell, D.J. Mech. Dev. (2001) [Pubmed]
  21. Interaction between EGFR signaling and DE-cadherin during nervous system morphogenesis. Dumstrei, K., Wang, F., Shy, D., Tepass, U., Hartenstein, V. Development (2002) [Pubmed]
  22. Adherens junction-dependent and -independent steps in the establishment of epithelial cell polarity in Drosophila. Harris, T.J., Peifer, M. J. Cell Biol. (2004) [Pubmed]
  23. Wnt-1 modulates cell-cell adhesion in mammalian cells by stabilizing beta-catenin binding to the cell adhesion protein cadherin. Hinck, L., Nelson, W.J., Papkoff, J. J. Cell Biol. (1994) [Pubmed]
  24. Dachsous encodes a member of the cadherin superfamily that controls imaginal disc morphogenesis in Drosophila. Clark, H.F., Brentrup, D., Schneitz, K., Bieber, A., Goodman, C., Noll, M. Genes Dev. (1995) [Pubmed]
  25. Neuroglian and DE-cadherin activate independent cytoskeleton assembly pathways in Drosophila S2 cells. Dubreuil, R.R., Grushko, T. Biochem. Biophys. Res. Commun. (1999) [Pubmed]
  26. Drosophila betaHeavy-spectrin is essential for development and contributes to specific cell fates in the eye. Thomas, G.H., Zarnescu, D.C., Juedes, A.E., Bales, M.A., Londergan, A., Korte, C.C., Kiehart, D.P. Development (1998) [Pubmed]
  27. PVF1, a PDGF/VEGF homolog, is sufficient to guide border cells and interacts genetically with Taiman. McDonald, J.A., Pinheiro, E.M., Montell, D.J. Development (2003) [Pubmed]
  28. Zinc transport activity of Fear of Intimacy is essential for proper gonad morphogenesis and DE-cadherin expression. Mathews, W.R., Ong, D., Milutinovich, A.B., Van Doren, M. Development (2006) [Pubmed]
  29. Cadherin Cad99C is regulated by Hedgehog signaling in Drosophila. Schlichting, K., Demontis, F., Dahmann, C. Dev. Biol. (2005) [Pubmed]
  30. Cadherin-mediated cell adhesion and cell motility in Drosophila trachea regulated by the transcription factor Escargot. Tanaka-Matakatsu, M., Uemura, T., Oda, H., Takeichi, M., Hayashi, S. Development (1996) [Pubmed]
  31. Dynamic behavior of the cadherin-based cell-cell adhesion system during Drosophila gastrulation. Oda, H., Tsukita, S., Takeichi, M. Dev. Biol. (1998) [Pubmed]
  32. Regulatory mechanisms required for DE-cadherin function in cell migration and other types of adhesion. Pacquelet, A., Rørth, P. J. Cell Biol. (2005) [Pubmed]
  33. Cadherin Cad99C is required for normal microvilli morphology in Drosophila follicle cells. Schlichting, K., Wilsch-Bräuninger, M., Demontis, F., Dahmann, C. J. Cell. Sci. (2006) [Pubmed]
  34. FAT is a component of glomerular slit diaphragms. Inoue, T., Yaoita, E., Kurihara, H., Shimizu, F., Sakai, T., Kobayashi, T., Ohshiro, K., Kawachi, H., Okada, H., Suzuki, H., Kihara, I., Yamamoto, T. Kidney Int. (2001) [Pubmed]
  35. Fluorescent-based assays establish Manduca sexta Bt-R(1a) cadherin as a receptor for multiple Bacillus thuringiensis Cry1A toxins in Drosophila S2 cells. Hua, G., Jurat-Fuentes, J.L., Adang, M.J. Insect Biochem. Mol. Biol. (2004) [Pubmed]
WikiGenes - Universities