The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The potential role of DFNA5, a hearing impairment gene, in p53-mediated cellular response to DNA damage.

The tumor suppressor p53 plays a crucial role in the cellular response to DNA damage by transcriptional activation of numerous downstream genes. Although a considerable number of p53 target genes have been reported, the precise mechanism of p53-regulated tumor suppression still remains to be elucidated. Here, we report a novel role of the DFNA5 gene in p53-mediated etoposide-induced cell death. The DFNA5 gene has been previously reported to be responsible for autosomal-dominant, nonsyndromic hearing impairment. The expression of the DFNA5 gene was strongly induced by exogenous and endogenous p53. The chromatin immunoprecipitation assay indicated that a potential p53- binding sequence is located in intron 1 of the DFNA5 gene. Furthermore, the reporter gene assay revealed that the sequence displays p53-dependent transcriptional activity. The ectopic expression of DFNA5 enhanced etoposide- induced cell death in the presence of p53; however, it was inhibited in the absence of p53. Finally, the expression of DFNA5 mRNA was remarkably induced by gamma-ray irradiation in the colon of p53(+/+) mice but not in that of p53(-/-) mice. These results suggest that DFNA5 plays a role in the p53-regulated cellular response to genotoxic stress probably by cooperating with p53.[1]


  1. The potential role of DFNA5, a hearing impairment gene, in p53-mediated cellular response to DNA damage. Masuda, Y., Futamura, M., Kamino, H., Nakamura, Y., Kitamura, N., Ohnishi, S., Miyamoto, Y., Ichikawa, H., Ohta, T., Ohki, M., Kiyono, T., Egami, H., Baba, H., Arakawa, H. J. Hum. Genet. (2006) [Pubmed]
WikiGenes - Universities