The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Gamma Rays

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Gamma Rays


Psychiatry related information on Gamma Rays


High impact information on Gamma Rays

  • We investigated the mechanism by which the transcriptional repressor Slug specifically rescues hematopoietic progenitor cells from lethal doses of gamma radiation [7].
  • The core circadian genes are induced by gamma radiation in wild-type mice but not in mPer2 mutant mice [8].
  • Reconstituting NBS cells with a mutant form of Nbs that cannot be phosphorylated at selected, ATM-dependent serine residues led to a specific reduction in clonogenic survival after gamma-radiation [9].
  • Here we report that Nbs is specifically phosphorylated in response to gamma-radiation, ultraviolet light and exposure to hydroxyurea [9].
  • Lunar Prospector gamma-ray spectrometer spectra along with counting rate maps of thorium, potassium, and iron delineate large compositional variations over the lunar surface [10].

Chemical compound and disease context of Gamma Rays


Biological context of Gamma Rays


Anatomical context of Gamma Rays

  • In contrast, p53 deficiency or constitutive expression of Bcl-2 markedly increased the resistance of lymphocytes to gamma radiation or anticancer drugs but had no effect on killing by FasL [20].
  • In an attempt to reconstitute RAG-2-/- mice with bone marrow- or fetal liver-derived progenitor cells, we subjected these mice to sublethal doses of gamma-radiation [21].
  • When MCp in BALB/c mice were eliminated with sublethal doses of gamma-radiation and then reconstituted with syngeneic BM, the administration of anti-alpha4beta7 integrin, anti-alpha4 integrin, anti-beta7 integrin, or anti-MAdCAM-1 monoclonal antibodies (mAbs) blocked the recovery of MCp in the small intestine [22].
  • The effect of 0-400 rad 60Co gamma-ray doses on distinct steps in the process of murine T-cell activation by concanavalin A (Con A) was investigated [23].
  • The effects of a myeloablative sublethal 775 cGy 60C gamma radiation exposure on endogenous bone marrow (BM) and splenic granulocyte-macrophage colony-stimulating factor (GM-CSF) and transforming growth factor-beta (TGF-beta) mRNA levels were assayed in B6D2F1 female mice [24].

Associations of Gamma Rays with chemical compounds


Gene context of Gamma Rays

  • Gamma radiation administered in early to mid-, but not late, G1 induced the arrest, suggesting that the p53 checkpoint is only active in G1 until cells commit to enter S phase at the G1 restriction point [30].
  • In this study, we show that BLM function is specifically required to properly relocalize the RAD50/MRE11/NBS1 (RMN) complex at sites of replication arrest, but is not essential in the activation of BRCA1 either after stalled replication forks or gamma-rays [31].
  • 53BP1 foci formation is not restricted to gamma-radiation but is also detected in response to UV radiation as well as hydroxyurea, camptothecin, etoposide, and methylmethanesulfonate treatment [32].
  • Three mutants (gam1, gam2, and gam4), insensitive or weakly sensitive to gamma-rays, exhibit increased frequency of spontaneous production of mutants with large deletions of the mtDNA (p-) and of all tested mitochondrial drug-resistant mutants [33].
  • A large decrease in mosaic clone frequency is observed when Rrp1 overexpression precedes treatment with gamma-rays, bleomycin, or paraquat [34].

Analytical, diagnostic and therapeutic context of Gamma Rays


  1. Activation of a c-K-ras oncogene by somatic mutation in mouse lymphomas induced by gamma radiation. Guerrero, I., Villasante, A., Corces, V., Pellicer, A. Science (1984) [Pubmed]
  2. The human XRCC9 gene corrects chromosomal instability and mutagen sensitivities in CHO UV40 cells. Liu, N., Lamerdin, J.E., Tucker, J.D., Zhou, Z.Q., Walter, C.A., Albala, J.S., Busch, D.B., Thompson, L.H. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  3. Effector and suppressor circuits of the immune response are activated in vivo by different mechanisms. Okamoto, H., Kripke, M.L. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  4. Inactivation of 14-3-3sigma influences telomere behavior and ionizing radiation-induced chromosomal instability. Dhar, S., Squire, J.A., Hande, M.P., Wellinger, R.J., Pandita, T.K. Mol. Cell. Biol. (2000) [Pubmed]
  5. Albumin activates the AKT signaling pathway and protects B-chronic lymphocytic leukemia cells from chlorambucil- and radiation-induced apoptosis. Jones, D.T., Ganeshaguru, K., Anderson, R.J., Jackson, T.R., Bruckdorfer, K.R., Low, S.Y., Palmqvist, L., Prentice, H.G., Hoffbrand, A.V., Mehta, A.B., Wickremasinghe, R.G. Blood (2003) [Pubmed]
  6. Long-term effects of radioprotector WR-2721 on locomotor activity and body weight of mice following exposure to ionizing radiation. Landauer, M.R., Davis, H.D., Dominitz, J.A., Weiss, J.F. Toxicology (1988) [Pubmed]
  7. Slug antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing puma. Wu, W.S., Heinrichs, S., Xu, D., Garrison, S.P., Zambetti, G.P., Adams, J.M., Look, A.T. Cell (2005) [Pubmed]
  8. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Fu, L., Pelicano, H., Liu, J., Huang, P., Lee, C. Cell (2002) [Pubmed]
  9. ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response. Wu, X., Ranganathan, V., Weisman, D.S., Heine, W.F., Ciccone, D.N., O'Neill, T.B., Crick, K.E., Pierce, K.A., Lane, W.S., Rathbun, G., Livingston, D.M., Weaver, D.T. Nature (2000) [Pubmed]
  10. Global elemental maps of the moon: the Lunar Prospector gamma-Ray spectrometer. Lawrence, D.J., Feldman, W.C., Barraclough, B.L., Binder, A.B., Elphic, R.C., Maurice, S., Thomsen, D.R. Science (1998) [Pubmed]
  11. Phytosphingosine in combination with ionizing radiation enhances apoptotic cell death in radiation-resistant cancer cells through ROS-dependent and -independent AIF release. Park, M.T., Kim, M.J., Kang, Y.H., Choi, S.Y., Lee, J.H., Choi, J.A., Kang, C.M., Cho, C.K., Kang, S., Bae, S., Lee, Y.S., Chung, H.Y., Lee, S.J. Blood (2005) [Pubmed]
  12. Failure of chronic glutathione elevation to reduce cytotoxicity produced by exposure to cis-diamminedichloroplatinum(II), ionizing radiation, or hyperthermia. Freeman, M.L., Meredith, M.J., Eisert, D.R. Cancer Res. (1990) [Pubmed]
  13. Protection by S-2-(3-aminopropylamino)ethylphosphorothioic acid against radiation-induced leg contractures in mice. Hunter, N., Milas, L. Cancer Res. (1983) [Pubmed]
  14. Activation of phospholipase D participates in signal transduction pathways responsive to gamma-radiation. Avila, M.A., Otero, G., Cansado, J., Dritschilo, A., Velasco, J.A., Notario, V. Cancer Res. (1993) [Pubmed]
  15. Overcoming resistance to gamma-rays in squamous carcinoma cells by poly-drug elevation of ceramide levels. Alphonse, G., Bionda, C., Aloy, M.T., Ardail, D., Rousson, R., Rodriguez-Lafrasse, C. Oncogene (2004) [Pubmed]
  16. A reversible, p53-dependent G0/G1 cell cycle arrest induced by ribonucleotide depletion in the absence of detectable DNA damage. Linke, S.P., Clarkin, K.C., Di Leonardo, A., Tsou, A., Wahl, G.M. Genes Dev. (1996) [Pubmed]
  17. Short telomeres result in organismal hypersensitivity to ionizing radiation in mammals. Goytisolo, F.A., Samper, E., Martín-Caballero, J., Finnon, P., Herrera, E., Flores, J.M., Bouffler, S.D., Blasco, M.A. J. Exp. Med. (2000) [Pubmed]
  18. RAD9-dependent G1 arrest defines a second checkpoint for damaged DNA in the cell cycle of Saccharomyces cerevisiae. Siede, W., Friedberg, A.S., Friedberg, E.C. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  19. Transfer and expression of three cloned human non-HLA-A,B,C class I major histocompatibility complex genes in mutant lymphoblastoid cells. Shimizu, Y., Geraghty, D.E., Koller, B.H., Orr, H.T., DeMars, R. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  20. Ionizing radiation and chemotherapeutic drugs induce apoptosis in lymphocytes in the absence of Fas or FADD/MORT1 signaling. Implications for cancer therapy. Newton, K., Strasser, A. J. Exp. Med. (2000) [Pubmed]
  21. Sublethal gamma-radiation induces differentiation of CD4-/CD8- into CD4+/CD8+ thymocytes without T cell receptor beta rearrangement in recombinase activation gene 2-/- mice. Zúñiga-Pflücker, J.C., Jiang, D., Schwartzberg, P.L., Lenardo, M.J. J. Exp. Med. (1994) [Pubmed]
  22. Intestinal mast cell progenitors require CD49dbeta7 (alpha4beta7 integrin) for tissue-specific homing. Gurish, M.F., Tao, H., Abonia, J.P., Arya, A., Friend, D.S., Parker, C.M., Austen, K.F. J. Exp. Med. (2001) [Pubmed]
  23. Effect of radiation on the production of interleukins and T-lymphocyte activities. Manori, I., Kushelevsky, A., Segal, S., Weinstein, Y. J. Natl. Cancer Inst. (1985) [Pubmed]
  24. Bone marrow and splenic granulocyte-macrophage colony-stimulating factor and transforming growth factor-beta mRNA levels in irradiated mice. Chang, C.M., Limanni, A., Baker, W.H., Dobson, M.E., Kalinich, J.F., Jackson, W., Patchen, M.L. Blood (1995) [Pubmed]
  25. Radiation exposures in Utah from Nevada Nuclear Tests. Beck, H.L., Krey, P.W. Science (1983) [Pubmed]
  26. Heart imaging with cationic complexes of technetium. Deutsch, E., Bushong, W., Glavan, K.A., Elder, R.C., Sodd, V.J., Scholz, K.L., Fortman, D.L., Lukes, S.J. Science (1981) [Pubmed]
  27. Anticardiolipin antibodies recognize beta 2-glycoprotein I structure altered by interacting with an oxygen modified solid phase surface. Matsuura, E., Igarashi, Y., Yasuda, T., Triplett, D.A., Koike, T. J. Exp. Med. (1994) [Pubmed]
  28. Growth characteristics of MOPC-315 plasmacytoma and response to anticancer agents. Valeriote, F., Lynch, R., Berger, N.A., White, E., Coulter, D. J. Natl. Cancer Inst. (1981) [Pubmed]
  29. Morbidity and mortality reduction by supplemental vitamin A or beta-carotene in CBA mice given total-body gamma-radiation. Seifter, E., Rettura, G., Padawer, J., Stratford, F., Weinzweig, J., Demetriou, A.A., Levenson, S.M. J. Natl. Cancer Inst. (1984) [Pubmed]
  30. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Di Leonardo, A., Linke, S.P., Clarkin, K., Wahl, G.M. Genes Dev. (1994) [Pubmed]
  31. Bloom's syndrome protein is required for correct relocalization of RAD50/MRE11/NBS1 complex after replication fork arrest. Franchitto, A., Pichierri, P. J. Cell Biol. (2002) [Pubmed]
  32. Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage-signaling pathways. Rappold, I., Iwabuchi, K., Date, T., Chen, J. J. Cell Biol. (2001) [Pubmed]
  33. Genetic control of enhanced mutability of mitochondrial DNA and gamma-ray sensitivity in Saccharomyces cerevisiae. Foury, F., Goffeau, A. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  34. Overexpression of a Rrp1 transgene reduces the somatic mutation and recombination frequency induced by oxidative DNA damage in Drosophila melanogaster. Szakmary, A., Huang, S.M., Chang, D.T., Beachy, P.A., Sander, M. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  35. Altered gastric emptying and prevention of radiation-induced vomiting in dogs. Dubois, A., Jacobus, J.P., Grissom, M.P., Eng, R.R., Conklin, J.J. Gastroenterology (1984) [Pubmed]
  36. Reduced p53 in peripheral blood mononuclear cells from patients with rheumatoid arthritis is associated with loss of radiation-induced apoptosis. Maas, K., Westfall, M., Pietenpol, J., Olsen, N.J., Aune, T. Arthritis Rheum. (2005) [Pubmed]
  37. Glyceraldehyde-3-phosphate dehydrogenase-catalyzed chain oxidation of reduced nicotinamide adenine dinucleotide by perhydroxyl radicals. Chan, P.C., Bielski, B.H. J. Biol. Chem. (1980) [Pubmed]
  38. Mammalian Chk2 is a downstream effector of the ATM-dependent DNA damage checkpoint pathway. Chaturvedi, P., Eng, W.K., Zhu, Y., Mattern, M.R., Mishra, R., Hurle, M.R., Zhang, X., Annan, R.S., Lu, Q., Faucette, L.F., Scott, G.F., Li, X., Carr, S.A., Johnson, R.K., Winkler, J.D., Zhou, B.B. Oncogene (1999) [Pubmed]
  39. Radioscintigraphic studies of 11C distribution in cats given 1-11C-ethanol. DeGrazia, J.A., Rodden, A.F., Teresi, J.D., Busick, D.D., Walz, D.R. J. Nucl. Med. (1975) [Pubmed]
WikiGenes - Universities