The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

A computational study on the kinetics and mechanism for the unimolecular decomposition of o-nitrotoluene.

The kinetics and mechanism for the unimolecular decomposition of o-nitrotoluene (o-CH(3)C(6)H(4)NO(2)) have been studied computationally at the G2M(RCC, MP2)//B3LYP/6-311G(d, p) level of theory in conjunction with rate constant predictions with RRKM and TST calculations. The results of the calculations reveal 10 decomposition channels for o-nitrotoluene and its six isomeric intermediates, among them four channels give major products: CH(3)C(6)H(4) + NO(2), C(6)H(4)C(H)ON (anthranil) + H(2)O, CH(3)C(6)H(4)O (o-methyl phenoxy) + NO, and C(6)H(4)C(H(2))NO + OH. The predicted rate constants in the 500-2000 K temperature range indicate that anthranil production, taking place initially by intramolecular H-abstraction from the CH(3) group by NO(2) followed by five-membered ring formation and dehydration, dominates at temperatures below 1000 K, whereas NO(2) elimination becomes predominant above 1100 K and CH(3)C(6)H(4)O formation by the nitro-nitrite isomerization/decomposition process accounts for only 5-11% of the total product yield in the middle temperature range 800-1300 K. The branching ratio for CH(2)C(6)H(4)NO formation by the decomposition process of CH(2)C(6)H(4)N(O)OH is negligible. The predicted high-pressure-limit rate constants with the rate expression of 4.10 x 10(17) exp[-37000/T] s(-1) for the NO(2) elimination channel and 9.09 x 10(12) exp[-25800/T] s(-1) for the H(2)O elimination channel generally agree reasonably with available experimental data. The predicted high-pressure-limit rate constants for the NO and OH elimination channels are represented as 1.49 x 10(14) exp[-30000/T] and 1.31 x 10(15) exp[-38000/T] s(-1), respectively.[1]


  1. A computational study on the kinetics and mechanism for the unimolecular decomposition of o-nitrotoluene. Chen, S.C., Xu, S.C., Diau, E., Lin, M.C. The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment & general theory. (2006) [Pubmed]
WikiGenes - Universities