The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Metabolic Profile of FYX-051 (4-(5-Pyridin-4-yl-1H-[1,2,4]triazol-3-yl)pyridine-2-carbonitrile) in the Rat, Dog, Monkey, and Human: Identification of N-Glucuronides and N-Glucosides.

FYX-051, 4-(5-pyridin-4-yl-1H-[1,2,4]triazol-3-yl)pyridine-2-carbonitrile, is a novel xanthine oxidoreductase inhibitor that can be used for the treatment of gout and hyperuricemia. We examined the metabolism of FYX-051 in rats, dogs, monkeys, and human volunteers after the p.o. administration of this inhibitor. The main metabolites in urine were pyridine N-oxide in rats, triazole N-glucoside in dogs, and triazole N-glucuronide in monkeys and humans, respectively. Furthermore, N-glucuronidation and N-glucosidation were characterized by two types of conjugation: triazole N(1)- and N(2)-glucuronidation and N(1)- and N(2)-glucosidation, respectively. N(1)- and N(2)-glucuronidation was observed in each species, whereas N(1)- and N(2)-glucosidation was mainly observed in dogs. With regard to the position of conjugation, N(1)-conjugation was predominant; this resulted in a considerably higher amount of N(1)-conjugate in each species than N(2)-conjugate. The present results indicate that the conjugation reaction observed in FYX-051 metabolism is unique, i.e., N-glucuronidation and N-glucosidation occur at the same position of the triazole ring, resulting in the generation of four different conjugates in mammals. In addition, a urinary profile of FYX-051 metabolites in monkeys and humans was relatively similar; triazole N-glucuronides were mainly excreted in urine.[1]


WikiGenes - Universities