The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

pyridine     pyridine

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of pyridine


Psychiatry related information on pyridine


High impact information on pyridine

  • Ca(2+) signaling, transferred into the mitochondria, stimulates the reduction of pyridine nucleotides [11].
  • We have studied the control of Ca(2+)-sensitive mitochondrial dehydrogenases (CSMDHs) by monitoring mitochondrial Ca2+ ([Ca2+]m) and the redox state of flavoproteins and pyridine nucleotides simultaneously with [Ca2+]c in single hepatocytes [12].
  • Particulate fractions from normal human granulocytes preactivated with opsonized zymosan were found to catalyze superoxide production in the presence of reduced pyridine nucleotides [1].
  • Here we show that a pyridine derivative, Y-27632, selectively inhibits smooth-muscle contraction by inhibiting Ca2+ sensitization [13].
  • In vivo determination of the pyridine nucleotide reduction charge by carbon-13 nuclear magnetic resonance spectroscopy [2].

Chemical compound and disease context of pyridine


Biological context of pyridine

  • It is proposed that the pyridine nucleotide-binding site is located on the cytoplasmic extension and the oxygen binding site is on the intramembranous portion of the enzyme [19].
  • Glutathione cycle activity and pyridine nucleotide levels in oxidant-induced injury of cells [20].
  • Cardiac energy production can be estimated by a variety of other techniques (such as high-energy phosphate utilization, oxygen consumption, and changes in tissue fluorescence related to pyridine nucleotide oxidation levels) [21].
  • In the present study we demonstrate that the reduction of pyridine nucleotides known to be required for steroid hydroxylation is enhanced by K+ (4.1-8.4 mM) in single rat glomerulosa cells [22].
  • We studied the kinetics and equilibria for hydrolysis of 21 complexes, containing, as X, halides and pseudohalides, pyridine (py) derivatives, and a thiolate, together with benzene (bz) or a substituted bz as arene, using UV-visible spectroscopy, HPLC, and electrospray MS [23].

Anatomical context of pyridine

  • Although the echidna erythrocytes had an abundance of 2,3-diphosphoglycerate and other glycolytic intermediates, no other energy-rich pyridine and purine compounds were detected [24].
  • Islet cells were also microinjected with glycolytic substrates and activators that produced transient changes in cellular levels of reduced pyridine nucleotides-nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate [NAD(P)H] [25].
  • The level of pyridine nucleotides (NADH and NAD+) in the mineralizing growth plate of the chick was ascertained by high-resolution scanning microfluorimetry and biochemical analysis [26].
  • A fluormetric method for the determination of pyridine nucleotides has been adapted for use in studying the reduced pyridine nucleotide oxidases in human polymorphonuclear leukocytes [27].
  • Periodate treatment, acid modification, and pyridine extraction abrogated the ability of C. parvum to activate suppressor macrophages [5].

Associations of pyridine with other chemical compounds


Gene context of pyridine

  • Biliverdin IXbeta reductase (BVR-B) catalyzes the pyridine nucleotide-dependent production of bilirubin-IXbeta, the major heme catabolite during early fetal development [32].
  • A negatively charged substituent at the 3-position of the reduced pyridine ring also negated the ability of these compounds to act as cosubstrates for NQO2 [33].
  • We have investigated the possibility that CFTR-mediated Cl- conductance is affected by the ratio of oxidized to reduced intracellular pyridine nucleotides [34].
  • The visible and pyridine hemochromogen spectra suggest that the Escherichia coli expressed purified HO-2 is a hemoprotein [35].
  • Pyridine nucleotide adenylyltransferase (PNAT) is an indispensable central enzyme in the NAD biosynthesis pathways catalyzing the condensation of pyridine mononucleotide (NMN or NaMN) with the AMP moiety of ATP to form NAD (or NaAD) [36].

Analytical, diagnostic and therapeutic context of pyridine

  • Under the 25% low flow perfusion, pyridine nucleotide autofluorescence increased time-dependently and reached a steady state at 10 min among the entire lobules [29].
  • CONTEXT: 2-[18F]fluoro-3-(2(S)-azetidinylmethoxy) pyridine (2-F-A-85380, abbreviated as 2-FA) is a recently developed radioligand that allows for visualization of brain alpha 4 beta 2* nicotinic acetylcholine receptors (nAChRs) with positron emission tomography (PET) scanning in humans [37].
  • Comparison of parallel derivatives of these two green proteins with magnetic circular dichroism spectroscopy reveals considerable similarities between several derivatives of these proteins, including the pyridine hemochromogen, the native ferric, ferrous-oxy, and ferrous-CO forms [38].
  • In further experiments, the coronary flow was regulated by an external pump which delivered fluid at a controlled rate into the aortic cannula above the coronary arteries, and the degree of tissue hypoxia was monitored by measuring changes of pyridine nucleotide reduction state by surface fluorescence techniques [39].
  • In a normoxic-anoxic titration, an increment of 50% in the reduction of pyridine nucleotide in intact tissue corresponds to the point at which the mitochondria are half-maximally active in energy coupling [40].


  1. Defect in pyridine nucleotide dependent superoxide production by a particulate fraction from the cranulocytes of patients with chronic granulomatous disease. Curnutte, J.T., Kipnes, R.S., Babior, B.M. N. Engl. J. Med. (1975) [Pubmed]
  2. In vivo determination of the pyridine nucleotide reduction charge by carbon-13 nuclear magnetic resonance spectroscopy. Unkefer, C.J., Blazer, R.M., London, R.E. Science (1983) [Pubmed]
  3. Phthalate dioxygenase reductase: a modular structure for electron transfer from pyridine nucleotides to [2Fe-2S]. Correll, C.C., Batie, C.J., Ballou, D.P., Ludwig, M.L. Science (1992) [Pubmed]
  4. Regions of cerebral ischemia located by pyridine nucleotide fluorescence. Welsh, F.A., O'Connor, M.J., Langfitt, T.W. Science (1977) [Pubmed]
  5. Effects of different fractions of Corynebacterium parvum on the cytotoxic T-cell response to alloantigens in mice. Lichtenstein, A., Tuttle, R., Cantrell, J., Zighelboim, J. J. Natl. Cancer Inst. (1982) [Pubmed]
  6. Olfactory dysfunction for pyridine and dementia progression in Alzheimer disease. Nordin, S., Almkvist, O., Berglund, B., Wahlund, L.O. Arch. Neurol. (1997) [Pubmed]
  7. Heteroaromatic analogs of 1-[2-(diphenylmethoxy)ethyl]- and 1-[2-[bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazines (GBR 12935 and GBR 12909) as high-affinity dopamine reuptake inhibitors. Matecka, D., Lewis, D., Rothman, R.B., Dersch, C.M., Wojnicki, F.H., Glowa, J.R., DeVries, A.C., Pert, A., Rice, K.C. J. Med. Chem. (1997) [Pubmed]
  8. Minimal olfactory perception during sleep: why odor alarms will not work for humans. Carskadon, M.A., Herz, R.S. Sleep. (2004) [Pubmed]
  9. Rapid acetylation of a dihydroxy compound by 4-(dimethylamino)pyridine catalysis: application to GLC determination of clindamycin palmitate hydrochloride. Rowe, E.L., Machkovech, S.M. Journal of pharmaceutical sciences. (1977) [Pubmed]
  10. Purine and pyridine nucleotide metabolism in the erythrocytes of patients with Rett syndrome. Rocchigiani, M., Sestini, S., Micheli, V., Pescaglini, M., Jacomelli, G., Hayek, G., Pompucci, G. Neuropediatrics. (1995) [Pubmed]
  11. Control of aldosterone secretion: a model for convergence in cellular signaling pathways. Spät, A., Hunyady, L. Physiol. Rev. (2004) [Pubmed]
  12. Decoding of cytosolic calcium oscillations in the mitochondria. Hajnóczky, G., Robb-Gaspers, L.D., Seitz, M.B., Thomas, A.P. Cell (1995) [Pubmed]
  13. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Uehata, M., Ishizaki, T., Satoh, H., Ono, T., Kawahara, T., Morishita, T., Tamakawa, H., Yamagami, K., Inui, J., Maekawa, M., Narumiya, S. Nature (1997) [Pubmed]
  14. Hydrogen peroxide production in chronic granulomatous disease. A cytochemical study of reduced pyridine nucleotide oxidases. Briggs, R.T., Karnovsky, M.L., Karnovsky, M.J. J. Clin. Invest. (1977) [Pubmed]
  15. Flavin reductase: sequence of cDNA from bovine liver and tissue distribution. Quandt, K.S., Hultquist, D.E. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  16. Impaired erythrocyte phosphoribosylpyrophosphate formation in hemolytic anemia due to pyruvate kinase deficiency. Zerez, C.R., Wong, M.D., Lachant, N.A., Tanaka, K.R. Blood (1988) [Pubmed]
  17. Interactions of guanidinium chloride and pyridine nucleotides with oxidized and two-electron-reduced lipoamide dehydrogenase from Escherichia coli. Wilkinson, K.D., Williams, C.H. J. Biol. Chem. (1979) [Pubmed]
  18. In vivo studies of pyridine nucleotide metabolism in Escherichia coli and Saccharomyces cerevisiae by carbon-13 NMR spectroscopy. Unkefer, C.J., London, R.E. J. Biol. Chem. (1984) [Pubmed]
  19. Arrangement of the respiratory burst oxidase in the plasma membrane of the neutrophil. Babior, G.L., Rosin, R.E., McMurrich, B.J., Peters, W.A., Babior, B.M. J. Clin. Invest. (1981) [Pubmed]
  20. Glutathione cycle activity and pyridine nucleotide levels in oxidant-induced injury of cells. Schraufstätter, I.U., Hinshaw, D.B., Hyslop, P.A., Spragg, R.G., Cochrane, C.G. J. Clin. Invest. (1985) [Pubmed]
  21. Cardiac heat production. Gibbs, C.L., Chapman, J.B. Annu. Rev. Physiol. (1979) [Pubmed]
  22. Pyridine nucleotide redox state parallels production of aldosterone in potassium-stimulated adrenal glomerulosa cells. Pralong, W.F., Hunyady, L., Várnai, P., Wollheim, C.B., Spät, A. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  23. Controlling ligand substitution reactions of organometallic complexes: tuning cancer cell cytotoxicity. Wang, F., Habtemariam, A., van der Geer, E.P., Fernández, R., Melchart, M., Deeth, R.J., Aird, R., Guichard, S., Fabbiani, F.P., Lozano-Casal, P., Oswald, I.D., Jodrell, D.I., Parsons, S., Sadler, P.J. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  24. Adenosine triphosphate-deficient erythrocytes of the egg-laying mammal, echidna (tachyglossus aculeatus). Kim, H.D., Zeidler, R.B., Sallis, J.D., Nichol, S.C., Isaacks, R.E. Science (1981) [Pubmed]
  25. Intercellular communication in pancreatic islet monolayer cultures: a microfluorometric study. Kohen, E., Kohen, C., Thorell, B., Mintz, D.H., Rabinovitch, A. Science (1979) [Pubmed]
  26. Initiation of endochondral calcification is related to changes in the redox state of hypertrophic chondrocytes. Shapiro, I.M., Golub, E.E., Kakuta, S., Hazelgrove, J., Havery, J., Chance, B., Frasca, P. Science (1982) [Pubmed]
  27. Comparison of NADH and NADPH oxidase activities in granules isolated from human polymorphonuclear leukocytes with a fluorometric assay. Iverson, D., DeChatelet, L.R., Spitznagel, J.K., Wang, P. J. Clin. Invest. (1977) [Pubmed]
  28. Hepatic leukostasis and hypoxic stress in adhesion molecule-deficient mice after gut ischemia/reperfusion. Horie, Y., Wolf, R., Anderson, D.C., Granger, D.N. J. Clin. Invest. (1997) [Pubmed]
  29. Prostaglandin E1 abrogates early reductive stress and zone-specific paradoxical oxidative injury in hypoperfused rat liver. Suzuki, H., Suematsu, M., Ishii, H., Kato, S., Miki, H., Mori, M., Ishimura, Y., Nishino, T., Tsuchiya, M. J. Clin. Invest. (1994) [Pubmed]
  30. Protective role of endogenous carbon monoxide in hepatic microcirculatory dysfunction after hemorrhagic shock in rats. Pannen, B.H., Köhler, N., Hole, B., Bauer, M., Clemens, M.G., Geiger, K.K. J. Clin. Invest. (1998) [Pubmed]
  31. Effects of compounds chemically related to salicylate on isolated antral mucosa of rabbits. Fuhro, R., Fromm, D. Gastroenterology (1978) [Pubmed]
  32. Structure of human biliverdin IXbeta reductase, an early fetal bilirubin IXbeta producing enzyme. Pereira, P.J., Macedo-Ribeiro, S., Párraga, A., Pérez-Luque, R., Cunningham, O., Darcy, K., Mantle, T.J., Coll, M. Nat. Struct. Biol. (2001) [Pubmed]
  33. Bioactivation of 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB 1954) by human NAD(P)H quinone oxidoreductase 2: a novel co-substrate-mediated antitumor prodrug therapy. Knox, R.J., Jenkins, T.C., Hobbs, S.M., Chen, S., Melton, R.G., Burke, P.J. Cancer Res. (2000) [Pubmed]
  34. Pyridine nucleotide redox potential modulates cystic fibrosis transmembrane conductance regulator Cl- conductance. Stutts, M.J., Gabriel, S.E., Price, E.M., Sarkadi, B., Olsen, J.C., Boucher, R.C. J. Biol. Chem. (1994) [Pubmed]
  35. Heme oxygenase-2 is a hemoprotein and binds heme through heme regulatory motifs that are not involved in heme catalysis. McCoubrey, W.K., Huang, T.J., Maines, M.D. J. Biol. Chem. (1997) [Pubmed]
  36. Structural characterization of a human cytosolic NMN/NaMN adenylyltransferase and implication in human NAD biosynthesis. Zhang, X., Kurnasov, O.V., Karthikeyan, S., Grishin, N.V., Osterman, A.L., Zhang, H. J. Biol. Chem. (2003) [Pubmed]
  37. Cigarette smoking saturates brain alpha 4 beta 2 nicotinic acetylcholine receptors. Brody, A.L., Mandelkern, M.A., London, E.D., Olmstead, R.E., Farahi, J., Scheibal, D., Jou, J., Allen, V., Tiongson, E., Chefer, S.I., Koren, A.O., Mukhin, A.G. Arch. Gen. Psychiatry (2006) [Pubmed]
  38. Evidence that a formyl-substituted iron porphyrin is the prosthetic group of myeloperoxidase: magnetic circular dichroism similarity of the peroxidase to Spirographis heme-reconstituted myoglobin. Sono, M., Bracete, A.M., Huff, A.M., Ikeda-Saito, M., Dawson, J.H. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  39. Contribution of tissue acidosis to ischemic injury in the perfused rat heart. Williamson, J.R., Schaffer, S.W., Ford, C., Safer, B. Circulation (1976) [Pubmed]
  40. Pyridine nucleotide as an indicator of the oxygen requirements for energy-linked functions of mitochondria. Chance, B. Circ. Res. (1976) [Pubmed]
WikiGenes - Universities