The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Noradrenergic augmentation of escitalopram response by risperidone: electrophysiologic studies in the rat brain.

BACKGROUND: Atypical antipsychotic drugs have been used in depressed patients not responding adequately to the selective serotonin reuptake inhibitors (SSRIs). The aim of the current study was to investigate putative mechanisms of the beneficial effect of atypical antipsychotic drugs during their co-administration with SSRIs. In previous electrophysiological studies, it was found that SSRIs decrease, while atypical antipsychotics increase, norepinephrine neuronal firing. Thus, the resistance to SSRIs could be explained, at least in part, by the SSRI-induced decrease of norepinephrine neuronal firing activity, and the beneficial effect of atypical antipsychotic drugs could be explained by the reversal of the above-mentioned suppression of firing. METHODS: Rats were administered the SSRI escitalopram and the atypical antipsychotic drug risperidone. Norepinephrine neuronal activity was determined using in vivo electrophysiology. RESULTS: Subacute and long-term escitalopram decreased, while risperidone co-administered with escitalopram increased, norepinephrine neuronal firing. Attempts at reversing the escitalopram-induced decrease of firing with various selective antagonists revealed that the serotonin-2A receptor antagonistic property of risperidone may mediate the pronoradrenergic action of atypical antipsychotics in the presence of serotonin reuptake inhibition. CONCLUSIONS: Risperidone reverses escitalopram-induced inhibition of norepinephrine neuronal activity by a mechanism involving serotonin-2A receptors. This reversal may explain the beneficial effect of atypical antipsychotics in treatment-resistant depression.[1]

References

 
WikiGenes - Universities