The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Protein kinase B/Akt modulates nephrotoxicant-induced necrosis in renal cells.

Protein kinase B (Akt) activation is well known for its protective effects against apoptosis. However, the role of Akt in regulation of necrosis is unknown. This study was designed to test whether Akt activation protects against nephrotoxicant-induced injury and death in renal proximal tubular cells (RPTC). Exposure of primary cultures of RPTC to the nephrotoxic cysteine conjugate, S-(1,2-dichlorovinyl)-l-cysteine (DCVC), resulted in 9% apoptosis and 30% necrosis at 24 h following the exposure. Akt was activated during 8 h but not at 24 h following toxicant exposure. No RPTC necrosis was observed during Akt activation. Blocking Akt activation using a phosphatidylinositol 3-kinase inhibitor, LY294002 (20 muM), or expressing dominant negative (inactive) Akt increased DCVC-induced RPTC necrosis to 42%. In contrast, Akt activation by expression of constitutively active Akt diminished necrosis to 15%. Modulation of Akt activity had no effect on DCVC-induced apoptosis. DCVC-induced RPTC injury was accompanied by decreases in respiration (51% of controls) and ATP levels (57% of controls). Akt inhibition exacerbated decreases in RPTC respiration and intracellular ATP content (both to 30% of controls). In contrast, Akt activation reduced DCVC-induced decreases in respiration (80% of controls) and prevented decline in ATP content. These data show that in RPTC, Akt activation reduces 1) toxicant-induced mitochondrial dysfunction, 2) decreases in ATP levels, and 3) necrosis. We conclude that Akt activation plays a protective role against necrosis caused by nephrotoxic insult in RPTC. Furthermore, we identified mitochondria as a subcellular target of protective actions of Akt against necrosis.[1]


  1. Protein kinase B/Akt modulates nephrotoxicant-induced necrosis in renal cells. Shaik, Z.P., Fifer, E.K., Nowak, G. Am. J. Physiol. Renal Physiol. (2007) [Pubmed]
WikiGenes - Universities