The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Clioquinol, a Cu(II)/Zn(II) Chelator, Inhibits Both Ubiquitination and Asparagine Hydroxylation of Hypoxia-inducible Factor-1{alpha}, Leading to Expression of Vascular Endothelial Growth Factor and Erythropoietin in Normoxic Cells.

We found that the Cu(II) and Zn(II)-specific chelator Clioquinol (10-50 mum) increased functional hypoxia-inducible factor 1alpha (HIF-1alpha) protein, leading to increased expression of its target genes, vascular endothelial growth factors and erythropoietin, in SH-SY5Y cells and HepG2 cells. Clioquinol inhibited ubiquitination of HIF-1alpha in a Cu(II)- and Zn(II)-dependent manner. It prevents FIH-1 from hydroxylating the asparagine residue (803) of HIF-1alpha in a Cu(II)- and Zn(II)-independent fashion. Therefore, it leads to the accumulation of HIF-1alpha that is prolyl but not asparaginyl hydroxylated. Consistent with this, co-immunoprecipitation assays showed that Clioquinol-induced HIF-1alpha interacted with cAMP-responsive element-binding protein in normoxic cells, implying that Clioquinol stabilizes the trans-active form of HIF-1alpha. Our results indicate that Clioquinol could be useful as an inducer of HIF-1alpha and its target genes in ischemic diseases.[1]

References

 
WikiGenes - Universities