The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Eupatilin attenuates bile acid-induced hepatocyte apoptosis.

BACKGROUND: In cases of cholestasis, bile acids induce hepatocyte apoptosis by activating death receptor-mediated apoptotic signaling cascades. Eupatilin (5,7-dihydroxy-3,4,6-trimethoxyflavone) is a pharmacologically active ingredient found in Artemisia asiatica and exhibits cytoprotective effects against experimentally induced gastrointestinal, pancreatic, and hepatic damage. This study was undertaken to examine if eupatilin modulates bile acid-induced hepatocyte apoptosis. METHODS: Huh-BAT cells, a human hepatocellular carcinoma cell line stably transfected with a bile acid transporter, were used in this study. Apoptosis was quantified using 4',6-diamidino-2-phenylindole dihydrochloride staining, and its signaling cascades were explored by immunoblot analysis. Kinase signaling was evaluated by immunoblotting and by using selective inhibitors. Eupatilin's in vivo effect on bile acid-induced hepatocyte apoptosis was explored in bile duct-ligated rats. RESULTS: Eupatilin significantly reduced bile acid-mediated hepatocyte apoptosis by attenuating bile acid-induced caspase 8 cleavage. Eupatilin diminished the bile acid-induced activation of mitogen-activated protein kinases, including p38 mitogen- activated protein kinase and c-Jun N-terminal kinase. In particular, the eupatilin-mediated inhibition of bile acid-induced c-Jun N-terminal kinase activation was found to be responsible for attenuating caspase 8 cleavage. Moreover, eupatilin diminished hepatocyte apoptosis in bile duct-ligated rats. CONCLUSIONS: Eupatilin attenuates bile acid-induced hepatocyte apoptosis by suppressing bile acid-induced kinase activation. Therefore, eupatilin might be therapeutically efficacious in a variety of human liver diseases associated with cholestasis.[1]

References

  1. Eupatilin attenuates bile acid-induced hepatocyte apoptosis. Park, S.C., Yoon, J.H., Kim, W., Gwak, G.Y., Kim, K.M., Lee, S.H., Lee, S.M., Lee, H.S. J. Gastroenterol. (2006) [Pubmed]
 
WikiGenes - Universities