The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Imaging Clathrin Dynamics in Drosophila melanogaster Hemocytes Reveals a Role for Actin in Vesicle Fission.

Clathrin-mediated endocytosis (CME) is essential for maintaining many basic cellular processes. We monitored the dynamics of clathrin in live Drosophila melanogaster hemocytes overexpressing clathrin light chain fused to enhanced green fluorescent protein (EGFP) using evanescent wave microscopy. Membrane-associated clathrin-coated structures (CCS) constitutively appeared at the peripheral filopodial membrane, moved centripetally while growing in intensity, before being eventually endocytosed within a few tens of seconds. This directed CCS traffic was independent of microtubules but could be blocked by latrunculin A. Taking advantage of available mutants of Drosophila, we expressed clathrin-EGFP in wasp and shibire mutant backgrounds to study the role of actin and dynamin in CCS dynamics and CME in hemocytes. We show that actin plays an essential role in CME in these cells, and that actin and dynamin act at the same stage, but independent of each other. Drosophila melanogaster hemocytes proved to be a promising model system to uncover the molecular events during CME in combining live-cell imaging and genetic analysis.[1]

References

 
WikiGenes - Universities