The common phospholipid-binding activity of the N-terminal domains of PEX1 and VCP/p97.
PEX1 is a type II AAA- ATPase that is indispensable for biogenesis and maintenance of the peroxisome, an organelle responsible for the primary metabolism of lipids, such as beta-oxidation and lipid biosynthesis. Recently, we demonstrated a striking structural similarity between its N-terminal domain and those of other membrane-related AAA-ATPases, such as valosin-containing protein (p97). The N-terminal domain of valosine-containing protein serves as an interface to its adaptor proteins p47 and Ufd1, whereas the physiologic interaction partner of the N-terminal domain of PEX1 remains unknown. Here we found that N-terminal domains isolated from valosine-containing protein, as well as from PEX1, bind phosphoinositides. The N-terminal domain of PEX1 appears to preferentially bind phosphatidylinositol 3-monophosphate and phosphatidylinositol 4-monophosphate, whereas the N-terminal domain of valosine-containing protein displays broad and nonspecific lipid binding. Although N-ethylmaleimide-sensitive fusion protein, CDC48 and Ufd1 have structures similar to that of valosine-containing protein, they displayed lipid specificity similar to that of the N-terminal domain of PEX1 in the assays. By mutational analysis, we demonstrate that a conserved arginine surrounded by hydrophobic residues is essential for lipid binding, despite very low sequence similarity between PEX1 and valosine-containing protein.[1]References
- The common phospholipid-binding activity of the N-terminal domains of PEX1 and VCP/p97. Shiozawa, K., Goda, N., Shimizu, T., Mizuguchi, K., Kondo, N., Shimozawa, N., Shirakawa, M., Hiroaki, H. FEBS J. (2006) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg