The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism.

The osteocyte, a terminally differentiated cell comprising 90%-95% of all bone cells, may have multiple functions, including acting as a mechanosensor in bone (re)modeling. Dentin matrix protein 1 (encoded by DMP1) is highly expressed in osteocytes and, when deleted in mice, results in a hypomineralized bone phenotype. We investigated the potential for this gene not only to direct skeletal mineralization but also to regulate phosphate (P(i)) homeostasis. Both Dmp1-null mice and individuals with a newly identified disorder, autosomal recessive hypophosphatemic rickets, manifest rickets and osteomalacia with isolated renal phosphate-wasting associated with elevated fibroblast growth factor 23 (FGF23) levels and normocalciuria. Mutational analyses showed that autosomal recessive hypophosphatemic rickets family carried a mutation affecting the DMP1 start codon, and a second family carried a 7-bp deletion disrupting the highly conserved DMP1 C terminus. Mechanistic studies using Dmp1-null mice demonstrated that absence of DMP1 results in defective osteocyte maturation and increased FGF23 expression, leading to pathological changes in bone mineralization. Our findings suggest a bone-renal axis that is central to guiding proper mineral metabolism.[1]

References

  1. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Feng, J.Q., Ward, L.M., Liu, S., Lu, Y., Xie, Y., Yuan, B., Yu, X., Rauch, F., Davis, S.I., Zhang, S., Rios, H., Drezner, M.K., Quarles, L.D., Bonewald, L.F., White, K.E. Nat. Genet. (2006) [Pubmed]
 
WikiGenes - Universities