The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Calcification, Physiologic

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Calcification, Physiologic

 

Psychiatry related information on Calcification, Physiologic

  • These metabolic changes have an impact on bone mineralization during a critical period in the development of bone mass.Recognition by physicians of the so-called 'female athlete triad', consisting of disordered eating, amenorrhea, and osteoporosis, may allow therapeutic intervention [6].
 

High impact information on Calcification, Physiologic

  • This enzyme regulates soft-tissue calcification and bone mineralization by producing inorganic pyrophosphate, a major inhibitor of calcification [7].
  • Physiological calcification occurs in bone when the soft ECM is converted into a rigid material capable of sustaining mechanical force; pathological calcification can occur in arteries and cartilage and other soft tissues [8].
  • These findings indicate that the OPG/OPGL/RANK signaling pathway may play an important role in both pathological and physiological calcification processes [9].
  • Serum levels of BGP corrected for alterations in renal function are superior to uncorrected S-BGP and to S-AP levels in the estimation of bone mineralization rates [10].
  • Lithium chloride administration to growing rats, which resulted in circulating lithium levels of 1.4 meq/liter, was attended by significant suppression of bone mineralization and organic matrix synthesis as assessed by tetracycline labeling and histological quantitation of osteoid, respectively [11].
 

Chemical compound and disease context of Calcification, Physiologic

 

Biological context of Calcification, Physiologic

 

Anatomical context of Calcification, Physiologic

 

Associations of Calcification, Physiologic with chemical compounds

 

Gene context of Calcification, Physiologic

  • Our data provide evidence that TNAP and PC-1 are key regulators of the extracellular PP(i) concentrations required for controlled bone mineralization [22].
  • The observed decreased mineral content in dmp1 null mice indicates a key role for dmp1 in bone mineralization [30].
  • In this rare incidence of estrogen deficiency, estrogen replacement demonstrated its importance for bone mineralization and maturation and glucose metabolism in a male carrying a novel mutation in the CYP19 gene [31].
  • To better define the precise role of FGF-23 in maintaining Pi balance and bone mineralization, we generated transgenic mice that express wild-type human FGF-23, under the control of the alpha1(I) collagen promoter, in cells of the osteoblastic lineage [32].
  • X-linked hypophosphatemia (XLH) is phenotypically similar to OHO and results from mutations in PHEX, a putative metallopeptidase believed to process a factor(s) regulating bone mineralization and renal phosphate reabsorption [33].
 

Analytical, diagnostic and therapeutic context of Calcification, Physiologic

References

  1. Effect of parathyroidectomy on bone aluminum accumulation in chronic renal failure. Andress, D.L., Ott, S.M., Maloney, N.A., Sherrard, D.J. N. Engl. J. Med. (1985) [Pubmed]
  2. Serum 1,25-dihydroxyvitamin D levels in normal subjects and in patients with hereditary rickets or bone disease. Scriver, C.R., Reade, T.M., DeLuca, H.F., Hamstra, A.J. N. Engl. J. Med. (1978) [Pubmed]
  3. Analysis of liver/bone/kidney alkaline phosphatase mRNA, DNA, and enzymatic activity in cultured skin fibroblasts from 14 unrelated patients with severe hypophosphatasia. Weiss, M.J., Ray, K., Fallon, M.D., Whyte, M.P., Fedde, K.N., Lafferty, M.A., Mulivor, R.A., Harris, H. Am. J. Hum. Genet. (1989) [Pubmed]
  4. Tumors associated with oncogenic osteomalacia express genes important in bone and mineral metabolism. De Beur, S.M., Finnegan, R.B., Vassiliadis, J., Cook, B., Barberio, D., Estes, S., Manavalan, P., Petroziello, J., Madden, S.L., Cho, J.Y., Kumar, R., Levine, M.A., Schiavi, S.C. J. Bone Miner. Res. (2002) [Pubmed]
  5. Abnormal vitamin B6 metabolism in alkaline phosphatase knock-out mice causes multiple abnormalities, but not the impaired bone mineralization. Narisawa, S., Wennberg, C., Millán, J.L. J. Pathol. (2001) [Pubmed]
  6. Altered hypothalamic-pituitary-ovarian axis function in young female athletes: implications and recommendations for management. Stafford, D.E. Treatments in endocrinology. (2005) [Pubmed]
  7. Mutation in Npps in a mouse model of ossification of the posterior longitudinal ligament of the spine. Okawa, A., Nakamura, I., Goto, S., Moriya, H., Nakamura, Y., Ikegawa, S. Nat. Genet. (1998) [Pubmed]
  8. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Luo, G., Ducy, P., McKee, M.D., Pinero, G.J., Loyer, E., Behringer, R.R., Karsenty, G. Nature (1997) [Pubmed]
  9. Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. Min, H., Morony, S., Sarosi, I., Dunstan, C.R., Capparelli, C., Scully, S., Van, G., Kaufman, S., Kostenuik, P.J., Lacey, D.L., Boyle, W.J., Simonet, W.S. J. Exp. Med. (2000) [Pubmed]
  10. Estimation of bone turnover evaluated by 47Ca-kinetics. Efficiency of serum bone gamma-carboxyglutamic acid-containing protein, serum alkaline phosphatase, and urinary hydroxyproline excretion. Charles, P., Poser, J.W., Mosekilde, L., Jensen, F.T. J. Clin. Invest. (1985) [Pubmed]
  11. Lithium inhibition of bone mineralization and osteoid formation. Baran, D.T., Schwartz, M.P., Bergfeld, M.A., Teitelbaum, S.L., Slatopolsky, E., Avioli, L.V. J. Clin. Invest. (1978) [Pubmed]
  12. Preliminary trials with 24,25-dihydroxyvitamin D3 in dialysis osteomalacia. Hodsman, A.B., Wong, E.G., Sherrard, D.J., Brickman, A.S., Lee, D.B., Singer, F.R., Norman, A.W., Coburn, J.W. Am. J. Med. (1983) [Pubmed]
  13. Tiludronate: bone pharmacology and safety. Bonjour, J.P., Ammann, P., Barbier, A., Caverzasio, J., Rizzoli, R. Bone (1995) [Pubmed]
  14. Bone metabolism in children with asthma treated with inhaled beclomethasone dipropionate. König, P., Hillman, L., Cervantes, C., Levine, C., Maloney, C., Douglass, B., Johnson, L., Allen, S. J. Pediatr. (1993) [Pubmed]
  15. Sources of estrogen and their importance. Simpson, E.R. J. Steroid Biochem. Mol. Biol. (2003) [Pubmed]
  16. Bone mineral density outcomes following long-term treatment with subcutaneous testosterone pellet implants in male hypogonadism. Zacharin, M.R., Pua, J., Kanumakala, S. Clin. Endocrinol. (Oxf) (2003) [Pubmed]
  17. Ethanol reduces bone formation and may cause osteoporosis. Diamond, T., Stiel, D., Lunzer, M., Wilkinson, M., Posen, S. Am. J. Med. (1989) [Pubmed]
  18. Leptin is expressed in and secreted from primary cultures of human osteoblasts and promotes bone mineralization. Reseland, J.E., Syversen, U., Bakke, I., Qvigstad, G., Eide, L.G., Hjertner, O., Gordeladze, J.O., Drevon, C.A. J. Bone Miner. Res. (2001) [Pubmed]
  19. Cloning of a functional vitamin D receptor from the lamprey (Petromyzon marinus), an ancient vertebrate lacking a calcified skeleton and teeth. Whitfield, G.K., Dang, H.T., Schluter, S.F., Bernstein, R.M., Bunag, T., Manzon, L.A., Hsieh, G., Dominguez, C.E., Youson, J.H., Haussler, M.R., Marchalonis, J.J. Endocrinology (2003) [Pubmed]
  20. Hypercalciuria and stones. Lemann, J., Worcester, E.M., Gray, R.W. Am. J. Kidney Dis. (1991) [Pubmed]
  21. Canine prostate induces new bone formation in mouse calvaria: A model of osteoinduction by prostate tissue. LeRoy, B.E., Bahnson, R.R., Rosol, T.J. Prostate (2002) [Pubmed]
  22. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Hessle, L., Johnson, K.A., Anderson, H.C., Narisawa, S., Sali, A., Goding, J.W., Terkeltaub, R., Millan, J.L. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  23. Effect of 1,25-dihydroxyvitamin D3 on phospholipid metabolism in a clonal osteoblast-like rat osteogenic sarcoma cell line. Matsumoto, T., Kawanobe, Y., Morita, K., Ogata, E. J. Biol. Chem. (1985) [Pubmed]
  24. Efficient bone formation by gene transfer of human LIM mineralization protein-3. Pola, E., Gao, W., Zhou, Y., Pola, R., Lattanzi, W., Sfeir, C., Gambotto, A., Robbins, P.D. Gene Ther. (2004) [Pubmed]
  25. Tamm-Horsfall protein is a critical renal defense factor protecting against calcium oxalate crystal formation. Mo, L., Huang, H.Y., Zhu, X.H., Shapiro, E., Hasty, D.L., Wu, X.R. Kidney Int. (2004) [Pubmed]
  26. Evidence for the promotion of bone mineralization by 1alpha,25-dihydroxycholecalciferol in the rat unrelated to the correction of deficiencies in serum calcium and phosphorus. Boris, A., Hurley, J.F., Trmal, T., Mallon, J.P., Matuszewski, D.S. J. Nutr. (1978) [Pubmed]
  27. Abnormal bone mineralization after fluoride treatment in osteoporosis: a small-angle x-ray-scattering study. Fratzl, P., Roschger, P., Eschberger, J., Abendroth, B., Klaushofer, K. J. Bone Miner. Res. (1994) [Pubmed]
  28. Estrogen and diphosphonate treatment provide long-term protection against osteopenia in ovariectomized rats. Wronski, T.J., Yen, C.F., Scott, K.S. J. Bone Miner. Res. (1991) [Pubmed]
  29. Osteoclast deficiency results in disorganized matrix, reduced mineralization, and abnormal osteoblast behavior in developing bone. Dai, X.M., Zong, X.H., Akhter, M.P., Stanley, E.R. J. Bone Miner. Res. (2004) [Pubmed]
  30. DMP1 depletion decreases bone mineralization in vivo: an FTIR imaging analysis. Ling, Y., Rios, H.F., Myers, E.R., Lu, Y., Feng, J.Q., Boskey, A.L. J. Bone Miner. Res. (2005) [Pubmed]
  31. Impact of estrogen replacement therapy in a male with congenital aromatase deficiency caused by a novel mutation in the CYP19 gene. Herrmann, B.L., Saller, B., Janssen, O.E., Gocke, P., Bockisch, A., Sperling, H., Mann, K., Broecker, M. J. Clin. Endocrinol. Metab. (2002) [Pubmed]
  32. Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis. Larsson, T., Marsell, R., Schipani, E., Ohlsson, C., Ljunggren, O., Tenenhouse, H.S., Jüppner, H., Jonsson, K.B. Endocrinology (2004) [Pubmed]
  33. Mepe, the gene encoding a tumor-secreted protein in oncogenic hypophosphatemic osteomalacia, is expressed in bone. Argiro, L., Desbarats, M., Glorieux, F.H., Ecarot, B. Genomics (2001) [Pubmed]
  34. Effects of intermittent parathyroid hormone administration on bone mineralization density in iliac crest biopsies from patients with osteoporosis: a paired study before and after treatment. Misof, B.M., Roschger, P., Cosman, F., Kurland, E.S., Tesch, W., Messmer, P., Dempster, D.W., Nieves, J., Shane, E., Fratzl, P., Klaushofer, K., Bilezikian, J., Lindsay, R. J. Clin. Endocrinol. Metab. (2003) [Pubmed]
  35. Bone mineral status in prepubertal children with cystic fibrosis. Mortensen, L.A., Chan, G.M., Alder, S.C., Marshall, B.C. J. Pediatr. (2000) [Pubmed]
  36. Effects of isotretinoin on bone mineralization during routine therapy with isotretinoin for acne vulgaris. Margolis, D.J., Attie, M., Leyden, J.J. Archives of dermatology. (1996) [Pubmed]
  37. Changes in bone mineral density after orchidectomy and hormone replacement therapy in individuals with androgen insensitivity syndrome. Mizunuma, H., Soda, M., Okano, H., Kagami, I., Miyamoto, S., Ohsawa, M., Ibuki, Y. Hum. Reprod. (1998) [Pubmed]
  38. Comparison of calcitonin, alendronate and fluorophosphate effects on ovariectomized rat bone. Giavaresi, G., Fini, M., Gnudi, S., Aldini, N.N., Rocca, M., Carpi, A., Giardino, R. Biomed. Pharmacother. (2001) [Pubmed]
 
WikiGenes - Universities