The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Self-assembly of alkanethiol monolayers on ag-au(111) alloy surfaces.

The self-assembly of ethanethiol (C(2)) and 1-octanethiol (C(8)) on Ag-Au(111) alloy films was studied by X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and scanning tunneling microscopy (STM), to illuminate how the monolayer structures and chemisorption-induced substrate defect structures depend on the alloy composition. The thiolate packing density at saturation increased approximately linearly with increasing Ag ratio. The CV data for reductive desorption of thiolates evidenced predominant or major contributions of Ag atoms to the substrate-sulfur interactions for the alloy surfaces. The STM study supported the lack of elemental periodicity on Ag-Au(111) and the consequent absence of periodicity in substrate-sulfur bonding. For C(8)-covered films, we observed systematic changes of substrate defect structures from elevated monatomic islands on Ag(111) to vacancy island structure on Au(111), in good correlation with the reductive desorption characteristics. The former type of defects can be explained best in terms of breakup of atomic terraces under excess thiolate packing density for Ag(111) and Ag-rich Ag-Au(111). As for the vacancy island formation, the present results are not agreeable with the chemical etching model but compatible with the lattice relaxation model.[1]

References

  1. Self-assembly of alkanethiol monolayers on ag-au(111) alloy surfaces. Kawasaki, M., Iino, M. The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical. (2006) [Pubmed]
 
WikiGenes - Universities