The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Down Syndrome Candidate Region 1 Increases the Stability of the I{kappa}B{alpha} Protein: IMPLICATIONS FOR ITS ANTI-INFLAMMATORY EFFECTS.

Down syndrome candidate region 1 (DSCR1), an endogenous inhibitor of calcineurin, inhibits the expression of genes involved in the inflammatory response. To elucidate the molecular basis of these anti-inflammatory effects, we analyzed the role of DSCR1 in the regulation of NF-kappaB transactivation using glioblastoma cells stably transfected with DSCR1.4 or its truncation mutants (DSCR1.4-(1-133) and DSCR1.4-(134-197)). Overexpression of DSCR1.4 significantly attenuated the induction of cyclooxygenase-2 ( COX-2) expression by phorbol 12-myristate 13-acetate (PMA) via a calcineurin-independent mechanism. Experiments using inhibitors of the signaling molecules for NF-kappaB activation showed that NF-kappaB is responsible for the induction of COX-2. Full-length and truncated DSCR1.4 decreased the steady-state activity of NF-kappaB as well as PMA-induced activation of NF-kappaB, which correlated with attenuation of COX-2 induction. DSCR1.4 did not affect the PMA-stimulated phosphorylation or degradation kinetics of IkappaBalpha; however, DSCR1.4 significantly decreased the basal turnover rate of IkappaBalpha and consequently up-regulated its steady-state level. In the same context, knockdown of endogenous DSCR1.4 increased the turnover rate of IkappaBalpha as well as COX-2 induction. These results suggest that DSCR1 attenuates NF-kappaB-mediated transcriptional activation by stabilizing its inhibitory protein, IkappaBalpha.[1]


WikiGenes - Universities