The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Sequence changes in both flanking sequences of a pre-tRNA influence the cleavage specificity of RNase P.

The cleavage specificities of the RNase P holoenzymes from Escherichia coli and the yeast Schizosaccharomyces pombe and of the catalytic M1 RNA from E. coli were analyzed in 5'-processing experiments using a yeast serine pre-tRNA with mutations in both flanking sequences. The template DNAs were obtained by enzymatic reactions in vitro and transcribed with phage SP6 or T7 RNA polymerase. The various mutations did not alter the cleavage specificity of the yeast RNase P holoenzyme; cleavage always occurred predominantly at position G + 1, generating the typical seven base-pair acceptor stem. In contrast, the specificity of the prokaryotic RNase P activities, i.e. the catalytic M1 RNA and the RNase P holoenzyme from E. coli, was influenced by some of the mutated pre-tRNA substrates, which resulted in an unusual cleavage pattern, generating extended acceptor stems. The bases G - 1 and C + 73, forming the eighth base pair in these extended acceptor stems, were an important motif in promoting the unusual cleavage pattern. It was found only in some natural pre-tRNAs, including tRNA(SeCys) from E. coli, and tRNAs(His) from bacteria and chloroplasts. Also, the corresponding mature tRNAs in vivo contain an eight base pair acceptor stem. The presence of the CCA sequence at the 3' end of the tRNA moiety is known to enhance the cleavage efficiency with the catalytic M1 RNA. Surprisingly, the presence or absence of this sequence in two of our substrate mutants drastically altered the cleavage specificity of M1 RNA and of the E. coli holoenzyme, respectively. Possible reasons for the different cleavage specificities of the enzymes, the influence of sequence alterations and the importance of stacking forces in the acceptor stems are discussed.[1]

References

 
WikiGenes - Universities