The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Bacterial competition between a bacteriocin-producing and a bacteriocin-negative strain of Streptococcus bovis in batch and continuous culture.

A bacteriocin-producing Streptococcus bovis strain (HC5) outcompeted a sensitive strain (JB1) before it reached stationary phase (pH 6.4), even though it grew 10% slower and cell-free bovicin HC5 could not yet be detected. The success of bacteriocin-negative S. bovis isolates was enhanced by the presence of another sensitive bacterium (Clostridium sticklandii SR). PCR based on repetitive DNA sequences indicated that S. bovis HC5 was not simply transferring bacteriocin genes to S. bovis JB1. When the two S. bovis strains were coinoculated into minimal medium, bacteriocin-negative isolates predominated, and this effect could be explained by the longer lag time (0.5 vs. 1.5 h) of S. bovis HC5. If the glucose concentration of the minimal medium was increased from 2 to 7 mg mL(-1), the effect of lag time was diminished and bacteriocin-producing isolates once again dominated the coculture. When the competition was examined in continuous culture, it became apparent that batch culture inocula were never able to displace a strain that had already reached steady state, even if the inoculum was large. This result indicated that bacterial selection for substrate affinity was even more important than bacteriocin production.[1]

References

 
WikiGenes - Universities