The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Cyclin d1 is necessary for tamoxifen-induced cell cycle progression in human breast cancer cells.

Despite the success of tamoxifen in treating hormone-responsive breast cancer, its use is limited by the development of resistance to the drug. Understanding the pathways involved in the growth of tamoxifen-resistant cells may lead to new ways to treat tamoxifen-resistant breast cancer. Here, we investigate the role of cyclin D1, a mediator of estrogen-dependent proliferation, in growth of tamoxifen-resistant cells using a cell culture model of acquired resistance to tamoxifen. We show that tamoxifen and 4-hydroxytamoxifen (OHT) promoted cell cycle progression of tamoxifen-resistant cells after growth-arrest mediated by the estrogen receptor down-regulator ICI 182,780. Down-regulation of cyclin D1 with small interfering RNA blocked basal cell growth of tamoxifen-resistant cells and induction of cell proliferation by OHT. In addition, pharmacologic inhibition of phosphatidylinositol 3-kinase/Akt or mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 pathways decreased basal cyclin D1 expression and impaired OHT-mediated cyclin D1 induction and cell cycle progression. These findings indicate that cyclin D1 expression is necessary for proliferation of tamoxifen-resistant cells and for tamoxifen-induced cell cycle progression. These results suggest that therapeutic strategies to block cyclin D1 expression or function may inhibit development and growth of tamoxifen-resistant tumors. (Cancer Res 2006; 66(23): 11478-84).[1]

References

 
WikiGenes - Universities