GSK3beta positively regulates Hedgehog signaling through Sufu in mammalian cells.
Hedgehog signaling plays important roles in embryonic patterning of multicellular organisms. This pathway is ultimately transmitted by the zinc-finger transcriptional factor Gli, of which activity is suppressed by Sufu, a negative regulator of this signaling. To clarify this regulation to more detail, we screened for Sufu-binding proteins. We identified GSK3beta as a specific binding partner of Sufu by mass spectrometric analysis. GSK3beta bound to Sufu both in vitro and in vivo. Down-regulation of GSK3beta expression by RNAi in Hedgehog-responsive cells attenuated Hedgehog signaling, suggesting that GSK3beta functions as a positive regulator of Hedgehog signaling. In addition, an in vitro kinase assay showed that GSK3beta phosphorylates Sufu and phosphorylation-mimicking mutant of Sufu showed significantly decreased ability to bind Gli1 and could not suppress the Gli-mediated expression of a reporter gene efficiently. These results strongly suggest that GSK3beta phosphorylates Sufu to positively regulate Hedgehog signaling in mammalian cells.[1]References
- GSK3beta positively regulates Hedgehog signaling through Sufu in mammalian cells. Takenaka, K., Kise, Y., Miki, H. Biochem. Biophys. Res. Commun. (2007) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg