The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The crystal structure of the rhomboid peptidase from Haemophilus influenzae provides insight into intramembrane proteolysis.

Rhomboid peptidases are members of a family of regulated intramembrane peptidases that cleave the transmembrane segments of integral membrane proteins. Rhomboid peptidases have been shown to play a major role in developmental processes in Drosophila and in mitochondrial maintenance in yeast. Most recently, the function of rhomboid peptidases has been directly linked to apoptosis. We have solved the structure of the rhomboid peptidase from Haemophilus influenzae (hiGlpG) to 2.2-A resolution. The phasing for the crystals of hiGlpG was provided mainly by molecular replacement, by using the coordinates of the Escherichia coli rhomboid (ecGlpG). The structural results on these rhomboid peptidases have allowed us to speculate on the catalytic mechanism of substrate cleavage in a membranous environment. We have identified the relative disposition of the nucleophilic serine to the general base/acid function of the conserved histidine. Modeling a tetrapeptide substrate in the context of the rhomboid structure reveals an oxyanion hole comprising the side chain of a second conserved histidine and the main-chain NH of the nucleophilic serine residue. In both hiGlpG and ecGlpG structures, a water molecule occupies this oxyanion hole.[1]

References

  1. The crystal structure of the rhomboid peptidase from Haemophilus influenzae provides insight into intramembrane proteolysis. Lemieux, M.J., Fischer, S.J., Cherney, M.M., Bateman, K.S., James, M.N. Proc. Natl. Acad. Sci. U.S.A. (2007) [Pubmed]
 
WikiGenes - Universities