The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Effects of Various Pregnanes and Two 23-Nor-5-cholenic Acids on Cardenolide Accumulation in Cell and Organ Cultures of Digitalis lanata.

5-Pregnen-3beta-ol-20-one (pregnenolone), 4-pregnene-3,20-dione (progesterone), 5-pregnene-3beta,21-diol-20-one (21-hydroxypregnenolone), 4-pregnen-21 -ol-3,20-dione (cortexone), 5beta-pregnane-3,20-dione, 5alpha-pregnane-3,20-dione, 5beta-pregnan-3alpha-ol-20-one, 5beta-pregnan-3beta-ol-20-one, 5beta-pregnane-3beta,14beta, 21-triol-20-one 3-acetate, 23-nor-5-cholenic acid-3beta,20xi-diol, and 23-nor-3,20(22) E-choladienic acid-3beta-ol were administered to photomixotrophic shoot cultures of DIGITALIS LANATA Ehrh. capable of synthesizing cardenolides, as well as to cardenolide-free tissue cultures, such as auxotrophic, dark-grown shoot cultures and cell suspension cultures of the same plant species. None of the pregnane precursors was qualified to restore cardenolide biosynthesis in the cardenolide-free tissues. The cardenolide content of light-grown shoot cultures, on the other hand, increased by 161%, 240%, 30%, 430% and 80% when l00 mg l (-1) of 21-hydroxypregnenolone, 5beta-pregnane-3,20-dione, 5beta-pregnan-3beta-ol-20-one, 5beta-pregnane-3beta,14beta,21-triol-20-one, 23-nor-5,20 (22) E-choladienic acid-3beta-ol, respectively, were administered. Pregnenolone, progesterone, cortexone, 5alpha-pregnanes, 5beta -pregnan-21-ols, and 23-nor-5-cholenic acid-3beta,20xi-diol, on the other hand, had no visible effect. Two different types of cardenolides (termed fucose-type cardenolides and digitoxose-type cardenolides) were identified which may be formed via different biosynthetic routes. The "norcholanic acid pathway" seems to be operative in D. LANATA shoot cultures only in the formation of fucose-type cardenolides.[1]

References

 
WikiGenes - Universities