The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Differences in the pharmacological activation of visual opsins.

Opsins, like many other G-protein-coupled receptors, sustain constitutive activity in the absence of ligand. In partially bleached rods and cones, opsin's activity closes cGMP-gated channels and produces a state of "pigment adaptation" with reduced sensitivity to light and accelerated flash response kinetics. The truncated retinal analogue, beta-ionone, further desensitizes partially bleached green-sensitive salamander rods, but enables partially bleached red-sensitive cones to recover dark-adapted physiology. Structural differences between rod and cone opsins were proposed to explain the effect. Rods and cones, however, also contain different transducins, raising the possibility that G-protein type determines the photoreceptor-specific effects of beta-ionone. To test the two hypotheses, we applied beta-ionone to partially bleached blue-sensitive rods and cones of salamander, two cells that couple the same cone-like opsin to either rod or cone transducin, respectively. Immunocytochemistry confirmed that all salamander rods contain one form of transducin, whereas all cones contain another. beta-Ionone enhanced pigment adaptation in blue-sensitive rods, but it also did so in blue- and UV-sensitive cones. Furthermore, all recombinant salamander rod and cone opsins, with the exception of the red-sensitive cone opsin, activated rod transducin upon the addition of beta-ionone. Thus opsin structure determines the identity of beta-ionone as an agonist or an inverse agonist and in that respect distinguishes the red-sensitive cone opsin from all others.[1]

References

  1. Differences in the pharmacological activation of visual opsins. Isayama, T., Chen, Y., Kono, M., Degrip, W.J., Ma, J.X., Crouch, R.K., Makino, C.L. Vis. Neurosci. (2006) [Pubmed]
 
WikiGenes - Universities