The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Interaction of drought and elevated CO(2 )concentration on photosynthetic down-regulation and susceptibility to photoinhibition in Japanese white birch seedlings grown with limited N availability.

The interaction of drought and elevated carbon dioxide concentration ([CO(2)]) on carboxylation capacity of Rubisco (V(cmax)) and susceptibility to photoinhibition may be an important determinant of plant responses to seasonal fluctuations in precipitation in an anticipated elevated [CO(2)] environment. Japanese white birch (Betula platyphylla var. japonica) leaves that developed wholly during a period of drought showed an increase in leaf nitrogen and a decrease in leaf carbohydrates that could ameliorate photosynthetic down-regulation, defined as a decrease in V(cmax) in response to elevated [CO(2)]. Photochemical quenching (q(P)) was decreased by elevated [CO(2)] but increased by drought when compared at a given intercellular [CO(2)] (C(i)), indicating that elevated [CO(2)] could increase the risk of photoinhibition, whereas long-term drought could alleviate the risk of photoinhibition. However, only a small variation in q(P) was measured among seedlings in the various water availability x [CO(2)] treatment combinations, consistent with the small treatment differences in chronic photoinhibition among the seedlings, as indicated by the ratio of variable to maximum chlorophyll fluorescence after overnight dark-adaptation. Our results suggest that the offsetting responses-reduced V(cmax) plus increased C(i) at elevated [CO(2)] and increased V(cmax) plus reduced C(i) under drought conditions-resulted in a narrow range of susceptibility to photoinhibition at the growth [CO(2)] in Japanese white birch seedlings grown in various water availability x [CO(2)] treatment combinations.[1]


WikiGenes - Universities