The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Immuno-isolation of Sec7p-coated transport vesicles from the yeast secretory pathway.

The transport of proteins destined for post-endoplasmic reticulum locations in the secretory pathway is mediated by small vesicular carriers. Transport vesicles have been generated in cell-free assays from the yeast Saccharomyces cerevisiae, and mammalian systems. Yeast genes encoding cytosolic components that participate in vesicular traffic were first identified from the collection of conditional-lethal sec-(secretory) mutants. Mutations in the yeast SEC7 gene disrupt protein transport in the secretory pathway at the nonpermissive temperature. The SEC7 gene product is a phosphoprotein of relative molecular mass 230,000 that functions from the cytoplasmic aspect of intracellular membranes. We report that in a yeast cell-free transport assay, the introduction of antibodies to Sec7 protein (Sec7p) results in the accumulation of transport vesicles. These vesicles are retrieved with Sec7p-specific antibodies by immuno-isolation for biochemical and electron microscopic characterization. Sec7p on the surface of the accumulated transport vesicles, in combination with previous genetic and biochemical studies, implicate Sec7p as part of a (non-clathrin) vesicle coat. This Sec7p-containing coat structure is proposed to be essential for vesicle budding at multiple stages in the yeast secretory pathway.[1]


  1. Immuno-isolation of Sec7p-coated transport vesicles from the yeast secretory pathway. Franzusoff, A., Lauzé, E., Howell, K.E. Nature (1992) [Pubmed]
WikiGenes - Universities