The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Protein Transport

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Protein Transport

 

Psychiatry related information on Protein Transport

 

High impact information on Protein Transport

  • We cloned the responsible gene, trafficking protein, kinesin binding 1 (Trak1), and showed that its protein product interacts with GABA(A) receptors [7].
  • We propose that Rich1 and Amot maintain TJ integrity by the coordinate regulation of Cdc42 and by linking specific components of the TJ to intracellular protein trafficking [8].
  • Protein translocation into the matrix requires a switch to a Tim21-free, PAM bound presequence translocase [9].
  • We found that mutations in SEC63, encoding a component of the protein translocation machinery in the ER, also cause this disease [10].
  • The primary late assembly (L) domain in the p6 region of HIV-1 Gag mediates the detachment of the virion by recruiting host Tsg101, a component of the class E vacuolar protein sorting (Vps) machinery [11].
 

Chemical compound and disease context of Protein Transport

 

Biological context of Protein Transport

 

Anatomical context of Protein Transport

 

Associations of Protein Transport with chemical compounds

 

Gene context of Protein Transport

  • This suggests that UBC6 may mediate selective degradation of ER membrane proteins and that the protein translocation defect of sec61 may be caused by proteolysis of components of a structurally distorted mutant translocation apparatus [24].
  • Mutations in the yeast SEC7 gene disrupt protein transport in the secretory pathway at the nonpermissive temperature [30].
  • These results confirm previous predictions, based upon genetic interactions between the SEC genes, that Sec61, Sec62 and Sec63 act together to facilitate protein translocation into the ER [31].
  • SEC21 is a gene required for ER to Golgi protein transport that encodes a subunit of a yeast coatomer [19].
  • Here we isolate a new temperature-sensitive mad2 mutant, mad2-2ts, and find that Mad2p is required for the membrane association of Ypt1p and Sec4p, two prenylated small GTP-binding proteins involved in protein trafficking [32].
 

Analytical, diagnostic and therapeutic context of Protein Transport

References

  1. SecA protein is exposed to the periplasmic surface of the E. coli inner membrane in its active state. Kim, Y.J., Rajapandi, T., Oliver, D. Cell (1994) [Pubmed]
  2. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Garrus, J.E., von Schwedler, U.K., Pornillos, O.W., Morham, S.G., Zavitz, K.H., Wang, H.E., Wettstein, D.A., Stray, K.M., Côté, M., Rich, R.L., Myszka, D.G., Sundquist, W.I. Cell (2001) [Pubmed]
  3. Rhizomelic chondrodysplasia punctata is a peroxisomal protein targeting disease caused by a non-functional PTS2 receptor. Motley, A.M., Hettema, E.H., Hogenhout, E.M., Brites, P., ten Asbroek, A.L., Wijburg, F.A., Baas, F., Heijmans, H.S., Tabak, H.F., Wanders, R.J., Distel, B. Nat. Genet. (1997) [Pubmed]
  4. Therapeutic intervention with inhibitors of co-stimulatory pathways in autoimmune disease. Aruffo, A., Hollenbaugh, D. Curr. Opin. Immunol. (2001) [Pubmed]
  5. Transport of vesicular stomatitis virus glycoprotein in a cell-free extract. Fries, E., Rothman, J.E. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  6. Alzheimer's disease betaA4 protein release and amyloid precursor protein sorting are regulated by alternative splicing. Hartmann, T., Bergsdorf, C., Sandbrink, R., Tienari, P.J., Multhaup, G., Ida, N., Bieger, S., Dyrks, T., Weidemann, A., Masters, C.L., Beyreuther, K. J. Biol. Chem. (1996) [Pubmed]
  7. Trak1 mutation disrupts GABA(A) receptor homeostasis in hypertonic mice. Gilbert, S.L., Zhang, L., Forster, M.L., Anderson, J.R., Iwase, T., Soliven, B., Donahue, L.R., Sweet, H.O., Bronson, R.T., Davisson, M.T., Wollmann, R.L., Lahn, B.T. Nat. Genet. (2006) [Pubmed]
  8. A Rich1/Amot Complex Regulates the Cdc42 GTPase and Apical-Polarity Proteins in Epithelial Cells. Wells, C.D., Fawcett, J.P., Traweger, A., Yamanaka, Y., Goudreault, M., Elder, K., Kulkarni, S., Gish, G., Virag, C., Lim, C., Colwill, K., Starostine, A., Metalnikov, P., Pawson, T. Cell (2006) [Pubmed]
  9. Mitochondrial presequence translocase: switching between TOM tethering and motor recruitment involves Tim21 and Tim17. Chacinska, A., Lind, M., Frazier, A.E., Dudek, J., Meisinger, C., Geissler, A., Sickmann, A., Meyer, H.E., Truscott, K.N., Guiard, B., Pfanner, N., Rehling, P. Cell (2005) [Pubmed]
  10. Mutations in SEC63 cause autosomal dominant polycystic liver disease. Davila, S., Furu, L., Gharavi, A.G., Tian, X., Onoe, T., Qian, Q., Li, A., Cai, Y., Kamath, P.S., King, B.F., Azurmendi, P.J., Tahvanainen, P., Kääriäinen, H., Höckerstedt, K., Devuyst, O., Pirson, Y., Martin, R.S., Lifton, R.P., Tahvanainen, E., Torres, V.E., Somlo, S. Nat. Genet. (2004) [Pubmed]
  11. AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Strack, B., Calistri, A., Craig, S., Popova, E., Göttlinger, H.G. Cell (2003) [Pubmed]
  12. Effects of alveolar hypoxia on lung fluid and protein transport in unanesthetized sheep. Bland, R.D., Demling, R.H., Selinger, S.L., Staub, N.C. Circ. Res. (1977) [Pubmed]
  13. Targeted deletion of angiotensin II type 1A receptor does not protect mice from progressive nephropathy of overload proteinuria. Benigni, A., Corna, D., Zoja, C., Longaretti, L., Gagliardini, E., Perico, N., Coffman, T.M., Remuzzi, G. J. Am. Soc. Nephrol. (2004) [Pubmed]
  14. Irreversible inhibition of the bacterial cysteine protease-transpeptidase sortase (SrtA) by substrate-derived affinity labels. Scott, C.J., McDowell, A., Martin, S.L., Lynas, J.F., Vandenbroeck, K., Walker, B. Biochem. J. (2002) [Pubmed]
  15. Truncation analysis of TatA and TatB defines the minimal functional units required for protein translocation. Lee, P.A., Buchanan, G., Stanley, N.R., Berks, B.C., Palmer, T. J. Bacteriol. (2002) [Pubmed]
  16. Characteristics of a Streptomyces coelicolor A3(2) extracellular protein targeting chitin and chitosan. Saito, A., Miyashita, K., Biukovic, G., Schrempf, H. Appl. Environ. Microbiol. (2001) [Pubmed]
  17. Molecular cloning of the microtubule-associated mechanochemical enzyme dynamin reveals homology with a new family of GTP-binding proteins. Obar, R.A., Collins, C.A., Hammarback, J.A., Shpetner, H.S., Vallee, R.B. Nature (1990) [Pubmed]
  18. The tumour-suppressor genes lgl and dlg regulate basal protein targeting in Drosophila neuroblasts. Peng, C.Y., Manning, L., Albertson, R., Doe, C.Q. Nature (2000) [Pubmed]
  19. SEC21 is a gene required for ER to Golgi protein transport that encodes a subunit of a yeast coatomer. Hosobuchi, M., Kreis, T., Schekman, R. Nature (1992) [Pubmed]
  20. A cytoplasmic inhibitor of the JNK signal transduction pathway. Dickens, M., Rogers, J.S., Cavanagh, J., Raitano, A., Xia, Z., Halpern, J.R., Greenberg, M.E., Sawyers, C.L., Davis, R.J. Science (1997) [Pubmed]
  21. Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Schu, P.V., Takegawa, K., Fry, M.J., Stack, J.H., Waterfield, M.D., Emr, S.D. Science (1993) [Pubmed]
  22. Involvement of GTP-binding "G" proteins in transport through the Golgi stack. Melançon, P., Glick, B.S., Malhotra, V., Weidman, P.J., Serafini, T., Gleason, M.L., Orci, L., Rothman, J.E. Cell (1987) [Pubmed]
  23. A putative GTP binding protein homologous to interferon-inducible Mx proteins performs an essential function in yeast protein sorting. Rothman, J.H., Raymond, C.K., Gilbert, T., O'Hara, P.J., Stevens, T.H. Cell (1990) [Pubmed]
  24. A protein translocation defect linked to ubiquitin conjugation at the endoplasmic reticulum. Sommer, T., Jentsch, S. Nature (1993) [Pubmed]
  25. Genetic and biochemical studies of protein sorting to the yeast vacuole. Stack, J.H., Emr, S.D. Curr. Opin. Cell Biol. (1993) [Pubmed]
  26. GTP-binding proteins in intracellular transport. Pfeffer, S.R. Trends Cell Biol. (1992) [Pubmed]
  27. Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Odorizzi, G., Babst, M., Emr, S.D. Cell (1998) [Pubmed]
  28. SRP samples nascent chains for the presence of signal sequences by interacting with ribosomes at a discrete step during translation elongation. Ogg, S.C., Walter, P. Cell (1995) [Pubmed]
  29. A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Butz, S., Okamoto, M., Südhof, T.C. Cell (1998) [Pubmed]
  30. Immuno-isolation of Sec7p-coated transport vesicles from the yeast secretory pathway. Franzusoff, A., Lauzé, E., Howell, K.E. Nature (1992) [Pubmed]
  31. Assembly of yeast Sec proteins involved in translocation into the endoplasmic reticulum into a membrane-bound multisubunit complex. Deshaies, R.J., Sanders, S.L., Feldheim, D.A., Schekman, R. Nature (1991) [Pubmed]
  32. The mitotic feedback control gene MAD2 encodes the alpha-subunit of a prenyltransferase. Li, R., Havel, C., Watson, J.A., Murray, A.W. Nature (1993) [Pubmed]
  33. A microsomal ATP-binding protein involved in efficient protein transport into the mammalian endoplasmic reticulum. Dierks, T., Volkmer, J., Schlenstedt, G., Jung, C., Sandholzer, U., Zachmann, K., Schlotterhose, P., Neifer, K., Schmidt, B., Zimmermann, R. EMBO J. (1996) [Pubmed]
  34. Inhibition of endoplasmic reticulum (ER)-to-Golgi transport induces relocalization of binding protein (BiP) within the ER to form the BiP bodies. Nishikawa, S., Hirata, A., Nakano, A. Mol. Biol. Cell (1994) [Pubmed]
  35. Dissection of brefeldin A-sensitive and -insensitive steps in apicoplast protein targeting. DeRocher, A., Gilbert, B., Feagin, J.E., Parsons, M. J. Cell. Sci. (2005) [Pubmed]
  36. Biotin synthesis in plants. The first committed step of the pathway is catalyzed by a cytosolic 7-keto-8-aminopelargonic acid synthase. Pinon, V., Ravanel, S., Douce, R., Alban, C. Plant Physiol. (2005) [Pubmed]
  37. Oral administration of a novel taxane, an antisense oligonucleotide targeting protein kinase A, and the epidermal growth factor receptor inhibitor Iressa causes cooperative antitumor and antiangiogenic activity. Tortora, G., Caputo, R., Damiano, V., Fontanini, G., Melisi, D., Veneziani, B.M., Zunino, F., Bianco, A.R., Ciardiello, F. Clin. Cancer Res. (2001) [Pubmed]
 
WikiGenes - Universities