The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

A new form of mammalian electron-transferring flavoprotein.

Mammalian electron-transferring flavoproteins have previously been reported to form the red anionic semiquinone on 1-electron reduction. This work describes a new form of electron-transferring flavoprotein (ETFB) from pig kidney which yields the blue neutral semiquinone upon photochemical, dithionite, or enzymatic reduction. ETFB appears in varying amounts as part of an established purification scheme for ETF. Both the normal form of ETF (ETFR) and ETFB show small differences in the spectra of their oxidized flavins, but no detectable differences in molecular weight or subunit composition. The catalytic activities of ETFR and ETFB are comparable when they mediate the transfer of reducing equivalents between medium chain acyl-CoA dehydrogenase and 2,6-dichlorophenolindophenol. ETFB can be converted into a form showing the characteristic red semiquinone of ETFR by full reduction at pH 6.5 or by preparation of the apoprotein and reconstitution with FAD. In contrast, no conditions for the conversion of red to blue forms of ETF have been found. ETFB contains substoichiometric levels of an unusual FAD analogue which yields a pink flavin species on photochemical or dithionite reduction. The evidence presented suggests that ETFB contains a labile factor or protein modification which is irreversibly lost on conversion to ETFR. The possible physiological significance of these data is discussed.[1]


  1. A new form of mammalian electron-transferring flavoprotein. Lehman, T.C., Thorpe, C. Arch. Biochem. Biophys. (1992) [Pubmed]
WikiGenes - Universities