The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Renal Transport of Adefovir, Cidofovir, and Tenofovir by SLC22A Family Members (hOAT1, hOAT3, and hOCT2).

PURPOSE: The nephrotoxicity of the nucleotide antivirals adefovir, cidofovir and tenofovir is considered to depend on the renal tubular transport of them. Although it is known that the antivirals are substrates of the human renal organic anion transporter hOAT1 (SLC22A6), there is no information available on other organic ion transporters. The aim of the present study was to investigate whether the other renal organic anion transporter hOAT3 (SLC22A8) and organic cation transporter hOCT2 (SLC22A2) transport the antivirals. MATERIALS AND METHODS: Uptake experiments were performed using HEK293 cells transfected with cDNA of the organic ion transporters. RESULTS: The uptake of adefovir, cidofovir and tenofovir in monolayers stably expressing hOAT3 increased time-dependently, compared with control. Probenecid, a typical inhibitor of organic anion transporters, completely inhibited their transport. The amounts of the antivirals taken up by hOAT3 were much lower than those by hOAT1. The transient expression of hOCT2 did not increase uptake of the antivirals. CONCLUSION: These results indicate that adefovir, cidofovir and tenofovir are substrates of hOAT3 as well as hOAT1, but that quantitatively hOAT1 is the major renal transporter for these drugs.[1]


  1. Renal Transport of Adefovir, Cidofovir, and Tenofovir by SLC22A Family Members (hOAT1, hOAT3, and hOCT2). Uwai, Y., Ida, H., Tsuji, Y., Katsura, T., Inui, K. Pharm. Res. (2007) [Pubmed]
WikiGenes - Universities